Advances in Exploratory Pattern Analytics on Ubiquitous Data and Social Media

  • Martin Atzmüller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9580)


Exploratory analysis of ubiquitous data and social media includes resources created by humans as well as those generated by sensor devices. This paper reviews recent advances concerning according approaches and methods, and provides additional review and discussion. Specifically, we focus on exploratory pattern analytics implemented using subgroup discovery and exceptional model mining methods, and put these into context. We summarize recent work on description-oriented community detection, spatio-semantic analysis using local exceptionality detection, and class association rule mining for activity recognition. Furthermore, we discuss results and implications.


Association Rule Quality Function Community Detection Basic Pattern Target Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agresti, A.: An Introduction to Categorical Data Analysis. Wiley-Blackwell, Hoboken (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Atzmueller, M.: Knowledge-Intensive Subgroup Mining - Techniques for Automatic and Interactive Discovery, Dissertations in Artificial Intelligence-Infix (Diski), vol. 307. IOS Press, March 2007Google Scholar
  3. 3.
    Atzmueller, M.: Mining social media. Informatik Spektrum 35(2), 132–135 (2012)CrossRefGoogle Scholar
  4. 4.
    Atzmueller, M.: Mining social media: key players, sentiments, and communities. WIREs: Data Min. Knowl. Disc. 2, 411–419 (2012)Google Scholar
  5. 5.
    Atzmueller, M.: Onto collective intelligence in social media: exemplary applications and perspectives. In: Proceedings of 3rd International Workshop on Modeling Social Media Hypertext (MSM 2012). ACM, New York (2012)Google Scholar
  6. 6.
    Atzmueller, M.: Data mining on social interaction networks. J. Data Min. Digital Humanit. 1, June 2014Google Scholar
  7. 7.
    Atzmueller, M.: Social behavior in mobile social networks: characterizing links, roles and communities. In: Chin, A., Zhang, D. (eds.) Mobile Social Networking: An Innovative Approach. Computational Social Sciences, pp. 65–78. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Atzmueller, M.: Subgroup discovery - advanced review. WIREs: Data Min. Knowl. Disc. 5(1), 35–49 (2015)Google Scholar
  9. 9.
    Atzmüller, M., Baumeister, J., Hemsing, A., Richter, E.-J., Puppe, F.: Subgroup mining for interactive knowledge refinement. In: Miksch, S., Hunter, J., Keravnou, E.T. (eds.) AIME 2005. LNCS (LNAI), vol. 3581, pp. 453–462. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Atzmueller, M., Baumeister, J., Puppe, F.: Evaluation of two strategies for case-based diagnosis handling multiple faults. In: Proceedings of 2nd Conference Professional Knowledge Management (WM 2003), Luzern, Switzerland (2003)Google Scholar
  11. 11.
    Atzmüller, M., Baumeister, J., Puppe, F.: Quality measures and semi-automatic mining of diagnostic rule bases. In: Seipel, D., Hanus, M., Geske, U., Bartenstein, O. (eds.) INAP/WLP 2004. LNCS (LNAI), vol. 3392, pp. 65–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Atzmueller, M., Baumeister, J., Puppe, F.: Semi-automatic learning of simple diagnostic scores utilizing complexity measures. Artif. Intell. Med. 37(1), 19–30 (2006). Special Issue on Intelligent Data Analysis in MedicineCrossRefGoogle Scholar
  13. 13.
    Atzmueller, M., Becker, M., Doerfel, S., Kibanov, M., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Scholz, C., Stumme, G.: Ubicon: observing social and physical activities. In: Proceedings of IEEE International Conference on Cyber, Physical and Social Computing (CPSCom), pp. 317–324. IEEE Computer Society, Washington, D.C. (2012)Google Scholar
  14. 14.
    Atzmueller, M., Becker, M., Kibanov, M., Scholz, C., Doerfel, S., Hotho, A., Macek, B.E., Mitzlaff, F., Mueller, J., Stumme, G.: Ubicon and its applications for ubiquitous social computing. New Rev. Hypermedia Multimedia 20(1), 53–77 (2014)CrossRefGoogle Scholar
  15. 15.
    Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: Towards mining semantic maturity in social bookmarking systems. In: Proceedings of Workshop on Social Data on the Web, 10th International Semantic Web Conference, ISWC, Bonn, Germany (2011)Google Scholar
  16. 16.
    Atzmueller, M., Doerfel, S., Hotho, A., Mitzlaff, F., Stumme, G.: Face-to-face contacts at a conference: dynamics of communities and roles. In: Atzmueller, M., Chin, A., Helic, D., Hotho, A. (eds.) MUSE 2011 and MSM 2011. LNCS, vol. 7472, pp. 21–39. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-oriented community detection using exhaustive subgroup discovery. Inf. Sci. 329, 965–984 (2016)CrossRefGoogle Scholar
  18. 18.
    Atzmueller, M., Kibanov, M., Hayat, N., Trojahn, M., Kroll, D.: Adaptive class association rule mining for human activity recognition. In: Proceedings of 6th International Workshop on Mining Ubiquitous and Social Environments (MUSE), ECML/PKDD, Porto, Portugal (2015)Google Scholar
  19. 19.
    Atzmueller, M., Lemmerich, F.: Fast subgroup discovery for continuous target concepts. In: Rauch, J., Raś, Z.W., Berka, P., Elomaa, T. (eds.) ISMIS 2009. LNCS, vol. 5722, pp. 35–44. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Atzmueller, M., Lemmerich, F.: VIKAMINE – open-source subgroup discovery, pattern mining, and analytics. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 842–845. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Atzmueller, M., Lemmerich, F.: Exploratory pattern mining on social media using geo-references and social tagging information. Int. J. Web Sci. 2(1–2), 80–112 (2013)CrossRefGoogle Scholar
  22. 22.
    Atzmueller, M., Lemmerich, F., Reutelshoefer, J., Puppe, F.: Wiki-enabled semantic data mining - task design, evaluation and refinement. In: Proceedings of 2nd International Workshop on Design, Evaluation and Refinement of Intelligent Systems (DERIS 2009), Krakow, Poland, vol. 545. CEUR-WS (2009)Google Scholar
  23. 23.
    Atzmueller, M., Mitzlaff, F.: Efficient descriptive community mining. In: Proceedings of 24th International FLAIRS Conference, pp. 459–464. AAAI Press, Palo Alto (2011)Google Scholar
  24. 24.
    Atzmueller, M., Mueller, J., Becker, M.: Exploratory subgroup analytics on ubiquitous data. In: Atzmueller, M., Chin, A., Scholz, C., Trattner, C. (eds.) MUSE/MSM 2013, LNAI 8940. LNCS (LNAI), vol. 8940, pp. 1–20. Springer, Heidelberg (2015)Google Scholar
  25. 25.
    Atzmueller, M., Puppe, F.: Semi-automatic visual subgroup mining using VIKAMINE. J. Univ. Comput. Sci. 11(11), 1752–1765 (2005)Google Scholar
  26. 26.
    Atzmüller, M., Puppe, F.: A methodological view on knowledge-intensive subgroup discovery. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI), vol. 4248, pp. 318–325. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Atzmüller, M., Puppe, F.: SD-Map – a fast algorithm for exhaustive subgroup discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Atzmueller, M., Puppe, F.: A case-based approach for characterization and analysis of subgroup patterns. J. Appl. Intell. 28(3), 210–221 (2008)CrossRefGoogle Scholar
  29. 29.
    Atzmueller, M., Puppe, F.: Semi-automatic refinement and assessment of subgroup patterns. In: Proceedings of 21st International Florida Artificial Intelligence Research Society Conference, pp. 518–523. AAAI Press, Palo Alto (2008)Google Scholar
  30. 30.
    Atzmueller, M., Puppe, F., Buscher, H.P.: Towards knowledge-intensive subgroup discovery. In: Proceedings of LWA 2004, Workshop KDML, Germany, pp. 117–123 (2004)Google Scholar
  31. 31.
    Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting background knowledge for knowledge-intensive subgroup discovery. In: Proceedings of 19th International Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, Scotland, pp. 647–652 (2005)Google Scholar
  32. 32.
    Atzmueller, M., Puppe, F., Buscher, H.P.: Profiling examiners using intelligent subgroup mining. In: Proceedings of 10th International Workshop on Intelligent Data Analysis in Medicine and Pharmacology (IDAMAP-2005), Aberdeen, Scotland, pp. 46–51 (2005)Google Scholar
  33. 33.
    Atzmueller, M., Schmidt, A., Kibanov, M.: DASHTrails: an approach for modeling and analysis of distribution-adapted sequential hypotheses and trails. In: Proceedings of WWW 2016 (Companion). IW3C2/ACM (2016)Google Scholar
  34. 34.
    Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: Mining recent temporal patterns for event detection in multivariate time series data. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 280–288. ACM, New York (2012)Google Scholar
  35. 35.
    Benz, D., Hotho, A., Jäschke, R., Krause, B., Mitzlaff, F., Schmitz, C., Stumme, G.: The social bookmark and publication management system bibsonomy. VLDB 19, 849–875 (2010)CrossRefGoogle Scholar
  36. 36.
    Cohen, W.W.: Fast effective rule induction. In: Twelfth International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann (1995)Google Scholar
  37. 37.
    Duivesteijn, W., Knobbe, A., Feelders, A., van Leeuwen, M.: Subgroup discovery meets bayesian networks - an exceptional model mining approach. In: Proceedings of International Conference on Data Mining (ICDM), pp. 158–167. IEEE, Washington, D.C. (2010)Google Scholar
  38. 38.
    Duivesteijn, W., Feelders, A., Knobbe, A.J.: Different slopes for different folks: mining for exceptional regression models with Cook’s distance. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 868–876. ACM, New York (2012)Google Scholar
  39. 39.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Freeman, L.: Segregation in social networks. Sociol. Methodol. Res. 6(4), 411 (1978)CrossRefGoogle Scholar
  41. 41.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. 38(3), 1–32 (2006)CrossRefGoogle Scholar
  42. 42.
    Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018 (2010)CrossRefGoogle Scholar
  43. 43.
    Grosskreutz, H., Rüping, S., Wrobel, S.: Tight optimistic estimates for fast subgroup discovery. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS (LNAI), vol. 5211, pp. 440–456. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  44. 44.
    Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: Chen, W., Naughton, J., Bernstein, P.A. (eds.) Proceedings of SIGMOD, pp. 1–12. ACM Press, May 2000Google Scholar
  45. 45.
    Hotelling, H.: The generalization of student’s ratio. Ann. Math. Statist. 2(3), 360–378 (1931)CrossRefzbMATHGoogle Scholar
  46. 46.
    Hotho, A., Pedersen, R.U., Wurst, M.: Ubiquitous data. In: May, M., Saitta, L. (eds.) Ubiquitous Knowledge Discovery. LNCS, vol. 6202, pp. 61–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  47. 47.
    Kibanov, M., Atzmueller, M., Illig, J., Scholz, C., Barrat, A., Cattuto, C., Stumme, G.: Is web content a good proxy for real-life interaction? A case study considering online and offline interactions of computer scientists. In: Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE Press, Boston (2015)Google Scholar
  48. 48.
    Kibanov, M., Atzmueller, M., Scholz, C., Stumme, G.: On the evolution of contacts and communities in networks of face-to-face proximity. In: Proceedings of IEEE International Conference on Cyber, Physical and Social Computing (CPSCom). IEEE Computer Society, Boston (2013)Google Scholar
  49. 49.
    Kibanov, M., Atzmueller, M., Scholz, C., Stumme, G.: Temporal evolution of contacts and communities in networks of face-to-face human interactions. China Inf. Sci. 57, 1–17 (2014)CrossRefGoogle Scholar
  50. 50.
    Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press (1996)Google Scholar
  51. 51.
    Klösgen, W.: Subgroup discovery. In: Handbook of Data Mining and Knowledge Discovery, chap. 16.3. Oxford University Press, New York (2002)Google Scholar
  52. 52.
    Knobbe, A.J., Cremilleux, B., Fürnkranz, J., Scholz, M.: From local patterns to global models: the LeGo approach to data mining. In: Proceedings of the ECML/PKDD-08 Workshop (LeGo-2008), pp. 1–16 (2008)Google Scholar
  53. 53.
    Koyuturk, M., Szpankowski, W., Grama, A.: Assessing significance of connectivity and conservation in protein interaction networks. J. Comput. Biol. 14(6), 747–764 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Lavrač, N., Vavpetič, A., Soldatova, L., Trajkovski, I., Kralj Novak, P.: Using ontologies in semantic data mining with SEGS and g-SEGS. In: Proceedings of the 14th International Conference on Discovery Science (DS) (2011)Google Scholar
  55. 55.
    Leman, D., Feelders, A., Knobbe, A.J.: Exceptional model mining. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 1–16. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  56. 56.
    Lemmerich, F., Atzmueller, M., Puppe, F.: Fast exhaustive subgroup discovery with numerical target concepts. Data Min. Knowl. Disc. 30(3), 711–762 (2015). MathSciNetCrossRefGoogle Scholar
  57. 57.
    Lemmerich, F., Becker, M., Atzmueller, M.: Generic pattern trees for exhaustive exceptional model mining. In: Flach, P.A., Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 277–292. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  58. 58.
    Lemmerich, F., Rohlfs, M., Atzmueller, M.: Fast discovery of relevant subgroup patterns. In: Proceedings of International FLAIRS Conference, pp. 428–433. AAAI Press, Palo Alto (2010)Google Scholar
  59. 59.
    Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. CoRR abs/0810.1355 (2008)Google Scholar
  60. 60.
    Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on multiple class-association rules. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) Proceedings of International Conference on Data Mining (ICDM), pp. 369–376. IEEE Computer Society (2001)Google Scholar
  61. 61.
    Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 80–86. AAAI Press, August 1998Google Scholar
  62. 62.
    May, M., Berendt, B., Cornuéjols, A., Gama, J., Giannotti, F., Hotho, A., Malerba, D., Menesalvas, E., Morik, K., Pedersen, R., et al.: Research challenges in ubiquitous knowledge discovery. In: Next Generation of Data Mining, pp. 131–150 (2008)Google Scholar
  63. 63.
    McDaid, A., Hurley, N.: Detecting highly overlapping communities with model-based overlapping seed expansion. In: Proceedings of the 2010 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2010, pp. 112–119. IEEE Computer Society, Washington, D.C. (2010)Google Scholar
  64. 64.
    Mitzlaff, F., Atzmueller, M., Benz, D., Hotho, A., Stumme, G.: Community assessment using evidence networks. In: Atzmueller, M., Hotho, A., Strohmaier, M., Chin, A. (eds.) MUSE/MSM 2010. LNCS, vol. 6904, pp. 79–98. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  65. 65.
    Mitzlaff, F., Atzmueller, M., Hotho, A., Stumme, G.: The social distributional hypothesis. J. Soc. Netw. Anal. Min. 4(216), 1–14 (2014)Google Scholar
  66. 66.
    Mitzlaff, F., Atzmueller, M., Stumme, G., Hotho, A.: Semantics of user interaction in social media. In: Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R. (eds.) Complex Networks IV. SCI, vol. 476, pp. 13–25. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  67. 67.
    Morik, K.: Detecting interesting instances. In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 13–23. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  68. 68.
    Morik, K., Boulicaut, J.-F., Siebes, A. (eds.): Local Pattern Detection. LNCS (LNAI), vol. 3539, pp. 115–134. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  69. 69.
    Morik, K., Potamias, G., Moustakis, V., Charissis, G.: Knowledgeable learning using MOBAL: a medical case study. Appl. Artif. Intell. 8(4), 579–592 (1994)CrossRefGoogle Scholar
  70. 70.
    Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(2), 1–15 (2004)CrossRefGoogle Scholar
  72. 72.
    Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. 38, 321–330 (2004)CrossRefGoogle Scholar
  73. 73.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. U.S.A. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  74. 74.
    Piatkowski, N., Lee, S., Morik, K.: Spatio-temporal random fields: compressible representation and distributed estimation. Mach. Learn. 93(1), 115–139 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Pool, S., Bonchi, F., van Leeuwen, M.: Description-driven community detection. Trans. Intell. Syst. Technol. 5(2), 1–21 (2014)CrossRefGoogle Scholar
  76. 76.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  77. 77.
    R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2009). ISBN: 3-900051-07-0.
  78. 78.
    Scholz, C., Atzmueller, M., Barrat, A., Cattuto, C., Stumme, G.: New insights and methods for predicting face-to-face contacts. In: Kiciman, E., Ellison, N.B., Hogan, B., Resnick, P., Soboroff, I. (eds.) Proceedings of International AAAI Conference on Weblogs and Social Media. AAAI Press, Palo Alto (2013)Google Scholar
  79. 79.
    Scholz, C., Atzmueller, M., Stumme, G.: Unsupervised and hybrid approaches for on-line RFID localization with mixed context knowledge. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Z.W. (eds.) ISMIS 2014. LNCS, vol. 8502, pp. 244–253. Springer, Heidelberg (2014)Google Scholar
  80. 80.
    Scholz, C., Doerfel, S., Atzmueller, M., Hotho, A., Stumme, G.: Resource-aware on-line RFID localization using proximity data. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 129–144. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  81. 81.
    Sulzmann, J.N., Fnkranz, J.: A comparison of techniques for selecting and combining class association rules. In: Baumeister, J., Atzmueller, M. (eds.) Proceedings of LWA, Technical report, Department of Computer Science, University of Wzburg, Germany, vol. 448, pp. 87–93 (2008)Google Scholar
  82. 82.
    Symeonidis, P., Perentis, C.: Link prediction in multi-modal social networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014, Part III. LNCS, vol. 8726, pp. 147–162. Springer, Heidelberg (2014)Google Scholar
  83. 83.
    Sez, C., Rodrigues, P., Gama, J., Robles, M., Garcmez, J.: Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Min. Knowl. Disc. 29, 950–975 (2014)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Thabtah, F.: A review of associative classification mining. Knowl. Eng. Rev. 22(1), 37–65 (2007)CrossRefGoogle Scholar
  85. 85.
    Vavpetič, A., Lavrač, N.: Semantic subgroup discovery systems and workflows in the SDM-toolkit. Comput. J. 56(3), 304–320 (2013)CrossRefGoogle Scholar
  86. 86.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences, 1st edn. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  87. 87.
    Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  88. 88.
    Wrobel, S., Morik, K., Joachims, T.: Maschinelles Lernen und Data Mining. Handbuch der Künstlichen Intelligenz 3, 517–597 (2000)Google Scholar
  89. 89.
    Yin, X., Han, J.: CPAR: classification based on predictive association rules. In: Barbar, D., Kamath, C. (eds.) Proceedings of SIAM International Conference on Data Mining (SDM), pp. 331–335. SIAM (2003)Google Scholar
  90. 90.
    Zhang, H., Korayem, M., You, E., Crandall, D.J.: Beyond co-occurrence: discovering and visualizing tag relationships from geo-spatial and temporal similarities. In: Proceedings of International Conference on Web Search and Data Mining (WSDM), pp. 33–42. ACM, New York (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Research Center for Information System DesignUniversity of KasselKasselGermany

Personalised recommendations