Understanding Human Mobility with Big Data

  • Fosca Giannotti
  • Lorenzo Gabrielli
  • Dino Pedreschi
  • Salvatore Rinzivillo
Chapter

Abstract

The paper illustrates basic methods of mobility data mining, designed to extract from the big mobility data the patterns of collective movement behavior, i.e., discover the subgroups of travelers characterized by a common purpose, profiles of individual movement activity, i.e., characterize the routine mobility of each traveler. We illustrate a number of concrete case studies where mobility data mining is put at work to create powerful analytical services for policy makers, businesses, public administrations, and individual citizens.

Keywords

Mobility data mining Big data analytics 

References

  1. 1.
    Furletti, B., Gabrielli, L., Renso, C., Rinzivillo, S.: Identifying users profiles from mobile calls habits. In: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, UrbComp 2012, pp. 17–24. ACM, New York (2012)Google Scholar
  2. 2.
    Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. 20(5), 695–719 (2011)CrossRefGoogle Scholar
  3. 3.
    Giannotti, F., Pedreschi, D. (eds.): Mobility, Data Mining and Privacy - Geographic Knowledge Discovery. Springer, Heidelberg (2008)Google Scholar
  4. 4.
    Nanni, M., Trasarti, R., Furletti, B., Gabrielli, L., Mede, P.V.D., Bruijn, J.D., de Romph, E., Bruil, G.: MP4-A project: mobility planning for Africa. In: In D4D Challenge @ 3rd Conference on the Analysis of Mobile Phone datasets (NetMob 2013), Cambridge, USA (2013)Google Scholar
  5. 5.
    Pappalardo, L., Rinzivillo, S., Qu, Z., Pedreschi, D., Giannotti, F.: Understanding the patterns of car travel. Eur. Phys. J. Spec. Top. 215(1), 61–73 (2013)CrossRefGoogle Scholar
  6. 6.
    Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., Giannotti, F.: Discovering the geographical borders of human mobility. KI - Künstliche Intelligenz 26(3), 253–260 (2012)CrossRefGoogle Scholar
  7. 7.
    Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car pooling. In: Apté, C., Ghosh, J., Smyth, P. (eds.) Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011, pp. 1190–1198. ACM (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fosca Giannotti
    • 1
  • Lorenzo Gabrielli
    • 1
  • Dino Pedreschi
    • 2
  • Salvatore Rinzivillo
    • 1
  1. 1.KDDLabISTI - CNRPisaItaly
  2. 2.KDDLab, Dipartimento di InformaticaUniversità di PisaPisaItaly

Personalised recommendations