Advertisement

Application to Control of Networked Queue Systems

  • Sabato ManfrediEmail author
Chapter
Part of the Advances in Industrial Control book series (AIC)

Abstract

In this chapter we present examples of application of the consensus-based algorithms introduced in Chap.  2 to deal with different network layer control system requirements of the NCPS. Specifically, we face the challenging issues of load balancing and rate control for: (i) wired networks (e.g., supporting end-to-end teleoperations of NCPSs); (ii) wireless networks (e.g., supporting NCPS hop-by-hop functionalities in industrial monitoring and control), and (iii) Content delivery networks (e.g., supporting service delivery of autonomous systems).

References

  1. 1.
    NIST ATM/HFC Network Simulator. http://www.antd.nist.gov/Hsntg/prdatm-sim.html
  2. 2.
    Hollot, C.V., Misra, V., Towsley, D., Gong, W.: A control theoretic analysis of red. In: Proceedings of IEEE International Conference on Computer Communications - INFOCOM ’01 (2001)Google Scholar
  3. 3.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  4. 4.
    IEEE: IEEE Standard for information technology telecommunications and information exchange between systems Local and metropolitan area networks specific requirements Part 15.1: Wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (LR-WPANs) (2006)Google Scholar
  5. 5.
    Blanchini, F., Lo Cigno, R., Tempo, R.: Robust rate control for integrated services packet networks. Proc. IEEE/ACM Trans. Netw. 10, 644–652 (2002)CrossRefGoogle Scholar
  6. 6.
    Pineda, J.D., Salvador, C.P.: On using content delivery networks to improve MOG performance. Int. J. Adv. Media Commun. 4, 182–201 (2010)CrossRefGoogle Scholar
  7. 7.
    Jain, R., Kalyanaraman, S., Goyal, R., Fahmy S., Viswanathan, R.: ERICA Switch Algorithm: a Complete Description. ATM Forum/96-1172 (1996)Google Scholar
  8. 8.
    Roberts, R.: Enhanched PRCA (Proportional Rate-Control Algorithm). AF-TM 94- 0735R1 (1994)Google Scholar
  9. 9.
    OPC HDA Specifications. Version 1.20.1.00. (2003) www.opcfoundation.org
  10. 10.
    IEEE Standard for a Smart Transducer Interface for Sensors and Actuators. IEEE 1451.3 36, 765–781 (2004)Google Scholar
  11. 11.
    Industrial Wireless Technology for the 21st Century. Report Technology Foresight (2004)Google Scholar
  12. 12.
    Wynn, R.: Plug-and-play sensors. Mach. Des. 75, 1–10 (2003)Google Scholar
  13. 13.
    IEEE: IEEE Standard for information technology telecommunications and information exchange between systems local and metropolitan area networks specific requirements Part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 1: higher speed physical layer in the 5 GHz band (1999)Google Scholar
  14. 14.
    Dong, M.J., Yung, G., Kaiser, W. J.: Low Power signal processing architectures for network microsensors. In: Proceedings of International Symposium on Low Power Electronics and Design, WINS project (1997). http://www.janet.ucla.edu/WINS
  15. 15.
    Kahn J.M., Katz R.H., Pister K.S.J.: Mobile networking for smart dust. In: Proceedings of ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM) (1999)Google Scholar
  16. 16.
    Rabaey, J., Ammer, J., Karalar, T., Li, S., Otis, B., Sheets, M., Tuan, T.: PicoRadios for wireless sensor networks: the next challenge in ultra-low-power design. In: Proceedings of the International Solid-State Circuits Conference (2002)Google Scholar
  17. 17.
    Heinzelman, W., Chandrakasan, A.P., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 2, 660–670 (2002)CrossRefGoogle Scholar
  18. 18.
    Yu, Y., Prasanna, V. K., Hong, B.: Communication models for algorithm design in networked sensor systems. In: 19th International Parallel and Distributed Processing Symposium (2005)Google Scholar
  19. 19.
    Bonivento, A., Carloni, L.P., Sangiovanni-Vincentelli, A.L.: Rialto: a bridge between description and implementation of control algorithms for wireless sensor networks. In: Proceedings of the Fifth International Conference on Embedded Software (EMSOFT) (2005)Google Scholar
  20. 20.
    Sgroi, M., Wolisz, A., Sangiovanni-Vincentelli, A., Rabaey, J. M.: A service-based universal application interface for ad-hoc wireless sensor networks (2003) http://bwrc.eecs.berkeley.edu/research/Pico_Radio/docs/SensorNetworksServicePlatformv1.pdf
  21. 21.
    Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to support sensor network applications. IIEEE Netw. 18, 6–14 (2004)CrossRefGoogle Scholar
  22. 22.
    Saber, R.O., Murray, R.M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control. 49, 1520–1523 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Eren, T., Belhumeur, P.N., Morse, A.S.: Coordination of groups of mobile agents using nearest neighbor rules. In: Proceedings of the IEEE Conference on Decision and Control (2002)Google Scholar
  24. 24.
    Xiao, L., Boyd, S.: Fast linear iterations for distributed averaging. In: Proceedings of the Conference on Decision and Control (2003)Google Scholar
  25. 25.
    Johansson, B., Speranzon, A., Johansson, M., Johansson, K.H.: On decentralized negotiation of optimal consensus. Automatica 44, 1175–1179 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
  27. 27.
  28. 28.
    HART communication foundation, TDMA Data Link Layer HCF SPEC, Revision 1.0 (2007)Google Scholar
  29. 29.
    Yin, H., Liu, X., Min, G., Lin, C.: Content delivery networks: a bridge between emerging applications and future ip networks. IEEE Netw. 24, 52–56 (2010)CrossRefGoogle Scholar
  30. 30.
    Sorte, D.D., Femminella, M., Parisi, A., Reali, G.: Network delivery of live events in a Digital Cinema scenario. In: International Conference on Optical Network Design and Modeling, ONDM (2008)Google Scholar
  31. 31.
  32. 32.
  33. 33.
  34. 34.
  35. 35.
  36. 36.
    Rfc 3568 - known content network (cn) request-routing mechanisms, IETF, Internet Draft, (2003) http://tools.ietf.org/html/rfc3568
  37. 37.
    Rfc 1794 - dns support for load balancing, IETF, Internet Draft, (1995) http://www.faqs.org/rfcs/rfc1794.html
  38. 38.
    Colajanni, M., Yu, P.S., Dias, D.M.: Analysis of task assignment policies in scalable distributed web-server systems. IEEE Trans. Parallel Distrib. Syst. 9, 585–600 (1998)CrossRefGoogle Scholar
  39. 39.
    Dias, D.M., Kish, W., Mukherjee, R., Tewari, R.: A scalable and highly available web server. In: Proceedings of IEEE Computer Conference (1996)Google Scholar
  40. 40.
    Hollot, C.V., Misra, V., Towsley, D., Gong, W.: Analysis and design of controllers for aqm routers supporting tcp flows. IEEE Trans. Autom. Control 47, 945–959 (2002)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Aweya, J., Oullette, M., Montuno, D.Y.: A control theoretic approach to active queue management. Comput. Netw. 36, 203–235 (2001)CrossRefGoogle Scholar
  42. 42.
    Blanchini, F., Cigno, R.L., Tempo, R.: Robust rate control for integrated services packet networks. IEEE/ACM Trans. Netw. 10, 644–652 (2002)CrossRefGoogle Scholar
  43. 43.
    Misra, V., Gong, W., Towsley, D.: Fluid-based analysis of a network of aqm routers supporting tcp flows with an application to red. ACM SIGCOMM (2000)Google Scholar
  44. 44.
    Cavendish, D., Gerla, M., Mascolo, S.: A control theoretical approach to congestion control in packet networks. IEEE/ACM Trans. Netw. 12, 893–906 (2004)CrossRefGoogle Scholar
  45. 45.
    Zeng, Z., Veeravalli, B.: Design and performance evaluation of queue-and-rate-adjustment dynamic load balancing policies for distributed networks. IEEE Trans. Comput. 55, 1410–1422 (2006)CrossRefGoogle Scholar
  46. 46.
    Cardellini, V., Colajanni, M., Yu, P.S.: Request redirection algorithms for distributed web systems. IEEE Trans. Parallel Distrib. Syst. 14, 355–368 (2003)CrossRefGoogle Scholar
  47. 47.
    Dahlin, M.: Interpreting stale load information. IEEE Trans. Parallel Distrib. Syst. 11, 1033–1047 (2000)CrossRefGoogle Scholar
  48. 48.
    Mitzenmacher, M.D.: The power of two choices in randomized load balancing. IEEE Trans. Parallel Distrib. Syst. 12, 1094–1104 (2001)CrossRefGoogle Scholar
  49. 49.
    Chen, C.-M., Ling, Y., Pang, M., Chen, W., Cai, S., Suwa, Y., Altintas, O.: Scalable request routing with next-neighbor load sharing in multi-server environments. Proc. IEEE Int. Conf. Adv. Inf. Netw. Appl. 1, 441–446 (2005)Google Scholar
  50. 50.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1995)zbMATHGoogle Scholar
  51. 51.
    Erdós, P., Rényi, A.: On the evolution of random graphs. A Matematikal Kutató Intézet Kóleményei. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: Proceedings of the SIGCOMM ’99 (1999)Google Scholar
  53. 53.
    Adamic, L.A., Lukose, R.M., Puniyani, A.R., Huberman, B.A.: Search in power-law networks. Phys. Rev. E 64, 046135 (2001)CrossRefGoogle Scholar
  54. 54.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Rao, V.P., Marandin, D.: Adaptive Backoff Exponent Algorithm for Zigbee (IEEE 802.15.4). NEW2AN (2006)CrossRefGoogle Scholar
  56. 56.
    Ohlin, M., Henriksson, D., Anton Cervin A.: TRUETIME 1.5 17 Reference Manual. Department of Automatic Control Lund University (2007) http://www.control.lth.se/truetime/
  57. 57.
  58. 58.
    Zhang, Y., Gulliver, T.A.: Quality of service for ad hoc on-demand distance vector routing. IEEE Int. Conf. Wirel. Mob. Comput. 3, 192–196 (2005)Google Scholar
  59. 59.
    Frezzetti, A., Manfredi, S.: Evaluation of energy efficiency-reconstruction error trade-off in the co-design of compressive sensing techniques for wireless sensor networks. Int. J. Wireless Inform. Network. 22, 386–398, (2015)Google Scholar
  60. 60.
    Manfredi, S., Oliviero, F., Romano, S.P.: Optimised balancing algorithm for content delivery networks. IET Commun. 6, 733–739, (2012)CrossRefGoogle Scholar
  61. 61.
    Manfredi, S.: Reliable and energy-efficient cooperative routing algorithm for wireless monitoring systems. IET Wireless Sensor Systems. 2, 128–135, (2012)CrossRefGoogle Scholar
  62. 62.
    Manfredi, S., Oliviero, F., Romano, S.P.: Distributed management for load balancing in content delivery networks. IEEE Globecom. 2010 (2010)Google Scholar
  63. 63.
    Manfredi , S.: An AQM routing control for reducing congestion in communications networks. IEEE Int. Symposium Circuit Systems, ISACS (2005)Google Scholar
  64. 64.
    Di Bernardo, M., Garofalo, F., Manfredi, S.: Performance of Robust AQM controllers in multibottleneck scenario. 44th IEEE Conf. Decis. Control (2005)Google Scholar
  65. 65.
    Manfredi, S., Di Bernardo, M.: A gain scheduling approach to active queue management. 16th IFAC World Congress (2005)Google Scholar
  66. 66.
    Manfredi, S., Di Bernardo, M., Garofalo, F.: A robust approach to active queue management control in networks. IEEE Int. Symposium Circuit System (2004)Google Scholar
  67. 67.
    Manfredi, S., Di Bernardo, M., Garofalo, F.: Robust output feedback active queue management control in TCP networks. IEEE Conf. Decis. Control (2004)Google Scholar
  68. 68.
    Manfredi, S., Garofalo, F., Di Bernardo, M.: Analysis and effects of retransmission mechanism on data network performance. IEEE Int. Symposium Circuit System (2004)Google Scholar
  69. 69.
    Manfredi, S.: A cooperative routing algorithm to increase QoS in wireless E-healthcare systems. In: Mohamed,K., E-Healthcare Systems and Wireless Communications: Current and Future Challengers, pp. 375–387, IGI Global Disseminator of Knowledge (2011)Google Scholar
  70. 70.
    Manfredi, S.: A consensus based rate control scheme for ATM networks. Int. J. Control, Autom. System 10, 817–823, (2012)CrossRefGoogle Scholar
  71. 71.
    Manfredi, S.: A reliable cooperative and distributed management for Wireless Industrial Monitoring and Control. Internat. J. Robust Nonlinear Control 20, 123–139, (2010)MathSciNetCrossRefGoogle Scholar
  72. 72.
    Manfredi, S., Di Bernardo, M., Garofalo, F.: Design, validation and experimental testing of a Robust AQM Control. Control Eng. Pract. 17, 394–407, (2009)CrossRefGoogle Scholar
  73. 73.
    Manfredi, S., Di Bernardo, M., Garofalo, F.: Reduction-based robust active queue management control. Control Eng. Pract. 15, 177–186, (2007)CrossRefGoogle Scholar
  74. 74.
    Manfredi, S.: Cooperative Rate Control in ATM Networks. American Control Conference (ACC) (2011)Google Scholar
  75. 75.
    Manfredi, S., Di Bernardo, M., Garofalo, F.: Small World Effects in Networks: An Engineering Interpretation. IEEE Int. Symposium Circuit Systems (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Information TechnologyUniversity of Naples Federico IINaplesItaly

Personalised recommendations