Movement Variability and Digital Human Models: Development of a Demonstrator Taking the Effects of Muscular Fatigue into Account

  • Jonathan Savin
  • Martine Gilles
  • Clarisse Gaudez
  • Vincent Padois
  • Philippe Bidaud
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 481)


Movement variability is an essential characteristic of human movement. However, despite its prevalence, it is almost completely ignored in workstation design. Neglecting this variability can lead to skip over parts of the future operator’s movements, thus bring to incomplete assessment of biomechanical risk factors. This paper starts with a focus on movement variability in occupational activities. Then, as an example of feasibility, it describes a Digital Human Model framework intended to simulate the movement variability induced by muscle fatigue. The demonstrator is based on several simulation environments, namely (1) XDE, a virtual human simulation software tool previously used for ergonomics analyses, (2) a dynamic three-compartment model of muscle fatigue and recovery, and (3) OpenSim, a dynamic musculoskeletal simulation software. The demonstrator is a first step towards tools to assist designers in considering movement variability for improved ergonomics at the workstation.


Movement variability Digital human models Ergonomics assessment Workstation design Muscle fatigue 


  1. 1.
    Luger, T., Bosch, T., Veeger, D., de Looze, M.: The influence of task variation on manifestation of fatigue is ambiguous—a literature review. Ergonomics 57, 162–174 (2014)CrossRefGoogle Scholar
  2. 2.
    Samani, A., Pontonnier, C., Dumont, G., Madeleine, P.: Kinematic synergy in a real and a virtual simulated assembly task. In: Proceedings 19 th Triennial Congress of the IEA. p. 8, Melbourne (Australy) (2015)Google Scholar
  3. 3.
    Latash, M.L., Scholz, J.P., Schoner, G.: Motor control strategies revealed in the structure of motor variability. Exerc. Sport Sci. Rev. 30, 26–31 (2002)CrossRefGoogle Scholar
  4. 4.
    Gaudez, C., Gilles, M.A., Savin, J.: Intrinsic movement variability at work. How long is the path from motor control to design engineering? Appl. Ergon. 53(Part A), 71–78 (2016)Google Scholar
  5. 5.
    Srinivasan, D., Mathiassen, S.E.: Motor variability—an important issue in occupational life. Work 41, 2527–2534 (2012)Google Scholar
  6. 6.
    De Magistris, G., Micaelli, A., Evrard, P., Andriot, C., Savin, J., Gaudez, C., Marsot, J.: Dynamic control of DHM for ergonomic assessments. Int. J. Ind. Ergon. 43, 170–180 (2013)CrossRefGoogle Scholar
  7. 7.
    Churchland, M.M., Afshar, A., Shenoy, K.V.: A central source of movement variability. Neuron 52, 1085–1096 (2006)CrossRefGoogle Scholar
  8. 8.
    Latash, M.L.: The bliss (not the problem) of motor abundance (not redundancy). Exp. Brain Res. 217, 1–5 (2012)CrossRefGoogle Scholar
  9. 9.
    Directive of the European Parliament and of the council on machinery (2006)Google Scholar
  10. 10.
    Pontonnier, C., Samani, A., Badawi, M., Madeleine, P., Dumont, G.: Assessing the ability of a VR-based assembly task simulation to evaluate physical risk factors. In: Presented at the IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers (IEEE) (2013)Google Scholar
  11. 11.
    Côté, J.N., Mathieu, P.A., Levin, M.F., Feldman, A.G.: Movement reorganization to compensate for fatigue during sawing. Exp. Brain Res. 146, 394–398 (2002)CrossRefGoogle Scholar
  12. 12.
    Ma, L., Zhang, W., Hu, B., Chablat, D., Bennis, F., Guillaume, F.: Determination of subject-specific muscle fatigue rates under static fatiguing operations. Ergonomics 56, 1889–1900 (2013)CrossRefGoogle Scholar
  13. 13.
    Vøllestad, N.K.: Measurement of human muscle fatigue. J. Neurosci. Meth. 74, 219–227 (1997)CrossRefGoogle Scholar
  14. 14.
    Ding, J., Wexler, A.S., Binder-Macleod, S.A.: A predictive model of fatigue in human skeletal muscles. J. Appl. Physiol. 89, 1322–1332 (2000)Google Scholar
  15. 15.
    Böl, M., Stark, H., Schilling, N.: On a phenomenological model for fatigue effects in skeletal muscles. J. Theor. Biol. 281, 122–132 (2011)CrossRefGoogle Scholar
  16. 16.
    Liu, J.Z., Brown, R.W., Yue, G.H.: A dynamical model of muscle activation, fatigue, and recovery. Biophys. J. 82, 2344–2359 (2002)CrossRefGoogle Scholar
  17. 17.
    Frey-Law, L.A., Looft, J.M., Heitsman, J.: A three-compartment muscle fatigue model accurately predicts joint-specific maximum endurance times for sustained isometric tasks. J. Biomech. 45, 1803–1808 (2012)CrossRefGoogle Scholar
  18. 18.
    Brouillette, D., Thivierge, G., Marchand, D., Charland, J.: Preparative study regarding the implementation of a muscular fatigue model in a virtual task simulator. Work-a J. Prev. Assess. Rehabil. 41, 2216–2225 (2012)Google Scholar
  19. 19.
    Maurice, P., Measson, Y., Padois, V., Bidaud, P.: Assessment of physical exposure to musculoskeletal risks in collaborative robotics using dynamic simulation. In: Padois, V., Bidaud, P., Khatib, O. (eds.) Romansy 19—Robot Design, Dynamics and Control: Proceedings of the 19th CISM-Iftomm Symposium, pp. 325–332. Springer, Vienna (2013)CrossRefGoogle Scholar
  20. 20.
    Merlhiot, X., Le Garrec, J., Saupin, G., Andriot, C.: The xde mechanical kernel: efficient and robust simulation of multibody dynamics with intermittent nonsmooth contacts. In: The 2nd Joint International Conference on Multibody System Dynamics (2012)Google Scholar
  21. 21.
    Maurice, P., Padois, V., Measson, Y., Bidaud, P.: Sensitivity analysis of human motion for the automatic improvement of gestures. Presented at the (2015)Google Scholar
  22. 22.
    Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007)CrossRefGoogle Scholar
  23. 23.
    Fuller, J.R., Lomond, K.V., Fung, J., Côté, J.N.: Posture-movement changes following repetitive motion-induced shoulder muscle fatigue. J. Electromyogr. Kinesiol. 19, 1043–1052 (2009)CrossRefGoogle Scholar
  24. 24.
    Faraway, J., Hu, J.: Modeling variability in reaching motions. In: SAE 2001 Transactions Journal of Passenger Cars—Mechanical Systems—V110-6. p. 11, Arlington (VA) (2001)Google Scholar
  25. 25.
    Schmidt, R.A., Zelaznik, H., Hawkins, B., Frank, J.S., Quinn, J.T.J.: Motor-output variability: a theory for the accuracy of rapid motor acts. Psychol. Rev. 47, 415–451 (1979)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jonathan Savin
    • 1
  • Martine Gilles
    • 1
  • Clarisse Gaudez
    • 1
  • Vincent Padois
    • 2
  • Philippe Bidaud
    • 2
  1. 1.INRSVandœuvre-lès-Nancy cedexFrance
  2. 2.Institut des Systèmes Intelligents et de Robotique (ISIR)Sorbonne Universités, UPMC Univ Paris 06, CNRSParis cedex 05France

Personalised recommendations