Finding Boundary Elements in Ordered Sets with Application to Safety and Requirements Analysis

  • Jaroslav BendíkEmail author
  • Nikola Beneš
  • Jiří Barnat
  • Ivana Černá
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9763)


The motivation for this study comes from various sources such as parametric formal verification, requirements engineering, and safety analysis. In these areas, there are often situations in which we are given a set of configurations and a property of interest with the goal of computing all the configurations for which the property is valid. Checking the validity of each single configuration may be a costly process. We are thus interested in reducing the number of such validity queries. In this work, we assume that the configuration space is equipped with a partial ordering that is preserved by the property to be checked. In such a case, the set of all valid configurations can be effectively represented by the set of all maximum valid (or minimum invalid) configurations w.r.t. the ordering. We show an algorithm to compute such boundary elements. We explain how this general setting applies to consistency and redundancy checking of requirements and to finding minimum cut-sets for safety analysis. We further discuss various heuristics and evaluate their efficiency, measured primarily by the number of validity queries, on a preliminary set of experiments.


Requirements analysis Formal verification Safety analysis 



The research leading to these results has received funding from the European Unions Seventh Framework Program (FP7/2007-2013) for CRYSTAL Critical System Engineering Acceleration Joint Undertaking under grant agreement No. 332830 and from specific national programs and/or funding authorities.


  1. 1.
    Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2004. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Barnat, J., Bauch, P., Beneš, N., Brim, L., Beran, J., Kratochvíla, T.: Analysing sanity of requirements for avionics systems. Form. Aspects Comput. 28(1), 45–63 (2016). doi: 10.1007/s00165-015-0348-9 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barnat, J., Bauch, P., Brim, L.: Checking sanity of software requirements. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 48–62. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek, T.: On parameter synthesis by parallel model checking. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(3), 693–705 (2012)CrossRefGoogle Scholar
  5. 5.
    Beer, I., Ben-David, S., Eisner, C., Rodeh, Y.: Efficient detection of vacuity in temporal model checking. Form. Methods Syst. Des. 18(2), 141–163 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Belov, A., Marques-Silva, J.: MUSer2: an efficient MUS extractor. J. Satisfiability Boolean Model. Comput. 8, 123–128 (2012)zbMATHGoogle Scholar
  7. 7.
    Chen, Y., Chen, Y.: On the decomposition of posets. In: 2012 International Conference on Computer Science Service System (CSSS), pp. 134–138 (2012)Google Scholar
  8. 8.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  9. 9.
    Dajani-Brown, S., Cofer, D., Hartmann, A.C., Pratt, T.W.: Formal modeling and analysis of an avionics triplex sensor voter. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 34–48. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51(1), 161–166 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fulkerson, D.R.: Note on Dilworth’s decomposition theorem for partially ordered sets. Proc. Am. Math. Soc. 7(4), 701–702 (1956)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hinchey, M., Jackson, M., Cousot, P., Cook, B., Bowen, J.P., Margaria, T.: Software engineering and formal methods. Commun. ACM 51, 54–59 (2008)CrossRefGoogle Scholar
  13. 13.
    Joshi, A., Miller, S.P., Whalen, M., Heimdahl, M.P.: A proposal for model-based safety analysis. In: The 24th Digital Avionics Systems Conference, 2005. DASC 2005, vol. 2. IEEE (2005)Google Scholar
  14. 14.
    Lauria, M.: CNFgen formula generator. Accessed 11 Jan 2016
  15. 15.
    Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enumeration. Constraints 21(2), 223–250 (2016). Google Scholar
  16. 16.
    Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable subsets of constraints. J. Autom. Reason. 40(1), 1–33 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jaroslav Bendík
    • 1
    Email author
  • Nikola Beneš
    • 1
  • Jiří Barnat
    • 1
  • Ivana Černá
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations