Incentive Stackelberg Mean-Payoff Games

  • Anshul GuptaEmail author
  • Sven Schewe
  • Ashutosh Trivedi
  • Maram Sai Krishna Deepak
  • Bharath Kumar Padarthi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9763)


We introduce and study incentive equilibria for multi-player mean-payoff games. Incentive equilibria generalise well-studied solution concepts such as Nash equilibria and leader equilibria. Recall that a strategy profile is a Nash equilibrium if no player can improve his payoff by changing his strategy unilaterally. In the setting of incentive and leader equilibria, there is a distinguished player—called the leader—who can assign strategies to all other players, referred to as her followers. A strategy profile is a leader strategy profile if no player, except for the leader, can improve his payoff by changing his strategy unilaterally, and a leader equilibrium is a leader strategy profile with a maximal return for the leader. In the proposed case of incentive equilibria, the leader can additionally influence the behaviour of her followers by transferring parts of her payoff to her followers. The ability to incentivise her followers provides the leader with more freedom in selecting strategy profiles, and we show that this can indeed improve the leader’s payoff in such games. The key fundamental result of the paper is the existence of incentive equilibria in mean-payoff games. We further show that the decision problem related to constructing incentive equilibria is NP-complete. On a positive note, we show that, when the number of players is fixed, the complexity of the problem falls in the same class as two-player mean-payoff games. We present an implementation of the proposed algorithms, and discuss experimental results that demonstrate the feasibility of the analysis.


Nash Equilibrium Linear Programming Problem Constraint System Strategy Profile Limit Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Björklund, H., Vorobyov, S.: A combinatorial strongly subexponential strategy improvement algorithm for mean-payoff games. Discrete Appl. Math. 155(2), 210–229 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boros, E., Elbassioni, K., Fouz, M., Gurvich, V., Makino, K., Manthey, B.: Stochastic mean payoff games: smoothed analysis and approximation schemes. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 147–158. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Brihaye, T., Bruyère, V., De Pril, J.: Equilibria in quantitative reachability games. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS, vol. 6072, pp. 72–83. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Brihaye, T., De Pril, J., Schewe, S.: Multiplayer cost games with simple Nash equilibria. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 59–73. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., Raskin, J.-F.: Faster algorithms for mean-payoff games. Formal Methods Syst. Des. 38(2), 97–118 (2011)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Mean-payoff parity games. In: Proceedings of LICS 2005, pp. 178–187 (2005)Google Scholar
  8. 8.
    Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theor. Comput. Sci. 67–82 (2006)Google Scholar
  9. 9.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. Int. J. Game Theory 8(2), 109–113 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Etessami, K., Yannakakis, M.: On the complexity of Nash equilibria and other fixed points. SIAM J. Comput. 39(6), 2531–2597 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Friedman, J.W.: Oligopoly and the Theory of Games. Advanced Textbooks in Economics. North-Holland Pub. Co. (1977)Google Scholar
  12. 12.
    Friedman, J.W.: A Non-cooperative equilibrium for supergames. Rev. Econ. Stud. 1–12 (1971)Google Scholar
  13. 13.
    Gupta, A., Schewe, S.: Quantitative verification in rational environments. In: Proceedings of TIME, pp. 123–131 (2014)Google Scholar
  14. 14.
    Gupta, A., Schewe, S.: It pays to pay in bi-matrix Ggmes - a rational explanation for bribery. In: Proceedings of AAMAS, pp. 1361–1369 (2015)Google Scholar
  15. 15.
    Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci. R&D 28(4), 331–344 (2013)Google Scholar
  16. 16.
    Jurdziński, M.: Deciding the winner in parity games is in UP \(\cap \) co-UP. Inf. Process. Lett. 68(3), 119–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of STOC, pp. 302–311 (1984)Google Scholar
  18. 18.
    Khachian, L.G.: A polynomial algorithm in linear programming. Dokl. Akad. Nauk SSSR 244, 1093–1096 (1979)MathSciNetGoogle Scholar
  19. 19.
    Nash, J.F.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36(1), 48–49 (1950)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Osborne, M.J., Rubinstein, A.: A course in game theory. The MIT Press, Cambridge (1994). Electronic editionzbMATHGoogle Scholar
  21. 21.
    Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of POPL, pp. 179–190 (1989)Google Scholar
  23. 23.
    Ramadge, P.J.G., Wonham, W.M.: The control of discrete event systems. Proc. IEEE 77(2), 81–98 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 369–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Schewe, S.: From parity and payoff games to linear programming. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 675–686. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 212–223. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Ummels, M.: The complexity of Nash equilibria in infinite multiplayer games. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 20–34. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Ummels, M., Wojtczak, D.: The complexity of Nash equilibria in limit-average games. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 482–496. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Vienna (1934)Google Scholar
  30. 30.
    Zwick, U., Paterson, M.S.: The complexity of mean-payoff games on graphs. Theor. Comput. Sci. 158(1–2), 343–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anshul Gupta
    • 1
    Email author
  • Sven Schewe
    • 1
  • Ashutosh Trivedi
    • 2
  • Maram Sai Krishna Deepak
    • 2
  • Bharath Kumar Padarthi
    • 2
  1. 1.University of LiverpoolLiverpoolUK
  2. 2.Indian Institute of Technology BombayMumbaiIndia

Personalised recommendations