Advertisement

Robust Split-Step Fourier Methods for Simulating the Propagation of Ultra-Short Pulses in Single- and Two-Mode Optical Communication Fibers

  • Ralf Deiterding
  • Stephen W. Poole
Chapter
Part of the Scientific Computation book series (SCIENTCOMP)

Abstract

Extensions of the split-step Fourier method (SSFM) for Schrödinger-type pulse propagation equations for simulating femto-second pulses in single- and two-mode optical communication fibers are developed and tested for Gaussian pulses. The core idea of the proposed numerical methods is to adopt an operator splitting approach, in which the nonlinear sub-operator, consisting of Kerr nonlinearity, the self-steepening and stimulated Raman scattering terms, is reformulated using Madelung transformation into a quasilinear first-order system of signal intensity and phase. A second-order accurate upwind numerical method is derived rigorously for the resulting system in the single-mode case; a straightforward extension of this method is used to approximate the four-dimensional system resulting from the nonlinearities of the chosen two-mode model. Benchmark SSFM computations of prototypical ultra-fast communication pulses in idealized single- and two-mode fibers with homogeneous and alternating dispersion parameters and also high nonlinearity demonstrate the reliable convergence behavior and robustness of the proposed approach.

Keywords

Stimulate Raman Scattering Upwind Scheme Gaussian Pulse Kerr Nonlinearity Spatial Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the Department of Defense and used resources of the Extreme Scale Systems Center at Oak Ridge National Laboratory.

References

  1. 1.
    Agrawal, G.P.: Nonlinear Fiber Optics, 4th edn. Academic Press (2007)Google Scholar
  2. 2.
    Amorim, A.A., Tognetti, M.V., Oliveira, P., Silva, J.L., Bernardo, L.M., Kärtner, F.X., Crespo, H.M.: Sub-two-cycle pulses by soliton self-compression in highly-nonlinear photonic crystal fibers. Opt. Lett. 34, 3851 (2009)CrossRefGoogle Scholar
  3. 3.
    Atre, R., Panigrahi, P.: Controlling pulse propagation in optical fibers through nonlinearity and dispersion management. Phys. Rev. A 76, 043,838 (2007)CrossRefGoogle Scholar
  4. 4.
    Blow, K.J., Wood, D.: Theoretical description of transient stimulated Raman scattering in optical fibers. IEEE J. Quantum Electronics 25 (12), 2665–2673 (1989)CrossRefGoogle Scholar
  5. 5.
    Deiterding, R., Glowinski, R., Oliver, H., Poole, S.: A reliable split-step Fourier method for the propagation equation of ultra-fast pulses in single-mode optical fibers. J. Lightwave Technology 31, 2008–2017 (2013)CrossRefGoogle Scholar
  6. 6.
    Glowinski, R.: Finite element methods for incompressible viscous flows. In: P.G. Ciarlet, J.L. Lions (eds.) Handbook of Numerical Analysis, vol. IX, pp. 3–1176, North-Holland, Amsterdam (2003)Google Scholar
  7. 7.
    Gnauck, A.H., Charlet, G., Tran, P., Winzer, P.J., Doerr, C.R., Centanni, J.C., Burrows, E.C., Kawanishi, T., Sakamoto, T., Higuma, K.: 25.6 Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals. J. Lightwave Technology 26, 79 (2008)Google Scholar
  8. 8.
    Guo, S., Huang, Z.: Densely dispersion-managed fiber transmission system with both decreasing average dispersion and decreasing local dispersion. Optical Engineering 43, 1227 (2004)CrossRefGoogle Scholar
  9. 9.
    Hager, W.: Applied Numerical Linear Algebra. Prentice Hall, Englewood Cliffs, NJ (1988)zbMATHGoogle Scholar
  10. 10.
    Hohage, T., Schmidt, F.: On the numerical solution of nonlinear Schrödinger type equations in fiber optics. Tech. Rep. ZIB-Report 02–04, Konrad-Zuse-Zentrum für Informationstechnik Berlin (2002)Google Scholar
  11. 11.
    Kalithasan, B., Nakkeeran, K., Porsezian, K., Tchofo Dinda, P., Mariyappa, N.: Ultra-short pulse propagation in birefringent fibers – the projection operator method. J. Opt. A: Pure Appl. Opt. 10, 085,102 (2008)CrossRefGoogle Scholar
  12. 12.
    Ketcheson, D.I., LeVeque, R.J.: WENOClaw: a higher order wave propagation method. In: Hyperbolic Problems: Theory, Numerics, Applications, pp. 609–616. Springer, Berlin (2008)Google Scholar
  13. 13.
    Lax, P.D.: Gibbs phenomena. J. Scientific Comput. 28 (2/3), 445–449 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    van Leer, B.: Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979)Google Scholar
  15. 15.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, New York (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Long, V.C., Viet, H.N., Trippenback, M., Xuan, K.D.: Propagation technique for ultrashort pulses II: Numerical methods to solve the pulse propagation equation. Comp. Meth. Science Techn. 14 (1), 13–19 (2008)CrossRefGoogle Scholar
  17. 17.
    Madelung, E.: Quantentheorie in hydrodynamischer Form. Zeitschrift für Physik 40 (3–4), 322–326 (1927)CrossRefzbMATHGoogle Scholar
  18. 18.
    Malomed, B.A.: Pulse propagation in a nonlinear optical fiber with periodically modulated dispersion: variational approach. Opt. Comm. 136, 313–319 (1997)CrossRefGoogle Scholar
  19. 19.
    Muslu, G.M., Erbay, H.A.: A split-step Fourier method for the complex modified Korteweg-de Vries equation. Computers and Mathematics with Applications 45, 503–514 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Richardson, L.J., Forsyiak W. Blow, K.J.: Single channel 320Gbit/s short period dispersion managed transmission over 6000km. Optics Letters 36, 2029 (2000)Google Scholar
  21. 21.
    Sinkin, O.V., Holzlöhner, R., Zweck, J., Menyuk, C.R.: Optimization of the split-step Fourier method in modeling optical-fiber communication systems. J. Lightwave Technology 21 (1), 61–68 (2003)CrossRefGoogle Scholar
  22. 22.
    Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Springer, New York (1982)zbMATHGoogle Scholar
  23. 23.
    Spiegel, E.A.: Fluid dynamical form of the linear and nonlinear Schrödinger equations. Physica D: Nonlinear Phenomena 1 (2), 236–240 (1980)CrossRefzbMATHGoogle Scholar
  24. 24.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Num. Anal. 5, 506–517 (1968)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Engineering and the EnvironmentUniversity of Southampton Highfield CampusSouthamptonUK
  2. 2.Oak Ridge National LaboratoryComputer Science and Mathematics DivisionOak RidgeUSA

Personalised recommendations