Constraint Solving for Verifying Modal Specifications of Workflow Nets with Data

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9609)


For improving efficiency and productivity companies are used to work with workflows that allow them to manage the tasks and steps of business processes. Furthermore, modalities have been designed to allow loose specifications by indicating whether activities are necessary or admissible. This paper aims at verifying modal specifications of coloured workflows with data assigned to the tokens and modified by transitions. To this end, executions of coloured workflow nets are modelled using constraint systems, and constraint solving is used to verify modal specifications specifying necessary or admissible behaviours. An implementation supporting the proposed approach and promising experimental results on an issue tracking system constitute a practical contribution.


Workflows Modalities Coloured Petri nets Constraint system 


  1. 1.
    Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A discourse on complexity of process models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 117–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Dumas, M., ter Hofstede, A.H.M.: UML activity diagrams as a workflow specification language. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 76–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P.: Three good reasons for using a petri-net-based workflow management system. J. Inf. Process Integr. Enterp. 428, 161–182 (1997)Google Scholar
  4. 4.
    van der Aalst, W.M.P., Van Hee, K.M., Houben, G.J.: Modelling and analysing workflow using a Petri-net based approach. In: Workshop on Computer-Supported Cooperative Work, Petri nets and Related Formalisms, pp. 31–50, June 1994Google Scholar
  5. 5.
    Ellis, C.A., Nutt, G.J.: Modeling and enactment of workflow systems. In: Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  6. 6.
    Liu, D., Wang, J., Chan, S.C.F., Sun, J., Zhang, L.: Modeling workflow processes with colored Petri nets. Comput. Ind. 49(3), 267–281 (2002)CrossRefGoogle Scholar
  7. 7.
    Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  8. 8.
    Jensen, K.: Coloured Petri nets. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets: Central Models and Their Properties. LNCS, pp. 248–299. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  9. 9.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: 3rd Annual Symposium on Logic in Computer Science, LICS 1988, Edinburgh, UK, pp. 203–210. IEEE CSP, July 1988Google Scholar
  10. 10.
    Bride, H., Kouchnarenko, O., Peureux, F.: Verifying modal workflow specifications using constraint solving. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS, vol. 8739, pp. 171–186. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Murata, T.: Petri nets: Properties, analysis and applications. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  12. 12.
    Presburger, M.: Über die vollständigkeit eines gewissen systems der arithmetik ganzer zahlen, in welchem die addition als einzige operation hervortritt. In: Sprawozdanie z I Kongresu metematykw slowiaskich, Warszawa, Poland, pp. 92–101 (1929)Google Scholar
  13. 13.
    Macworth, A.K.: Consistency in networks of relations. J. Artif. Intell. 8(1), 99–118 (1977)CrossRefGoogle Scholar
  14. 14.
    van Hentenryck, P., Dincbas, M.: Domains in logic programming. In: National Conference on Artificial Intelligence, AAAI 1986, pp. 759–765, August 1986Google Scholar
  15. 15.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc., Englewood Cliffs (1967)MATHGoogle Scholar
  16. 16.
    Namjoshi, K.S., Kurshan, R.P.: Syntactic program transformations for automatic abstraction. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855. Springer, Heidelberg (2000)Google Scholar
  17. 17.
    Vilkomir, S., Bowen, J.: Formalization of software testing criteria using the Z notation. In: 25th International Conference on Computer Software and Applications, COMPSAC 2001, Chicago, IL, USA, pp. 351–356. IEEE CSP, October 2001Google Scholar
  18. 18.
    Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous composition of modal Petri nets. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency V. LNCS, vol. 6900, pp. 96–120. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Desel, J.: Basic linear algebraic techniques for place/transition nets. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)Google Scholar
  20. 20.
    Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 603–619. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Bourdeaud’huy, T., Hanafi, S., Yim, P.: Incremental Integer Linear Programming Models for Petri Nets Reachability Problems. Petri Net: Theory and Applications. InTech, Rijeka (2008)MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hadrien Bride
    • 1
    • 2
  • Olga Kouchnarenko
    • 1
    • 2
  • Fabien Peureux
    • 1
  1. 1.Institut FEMTO-ST – UMR CNRS 6174University of Bourgogne Franche-ComtéBesançonFrance
  2. 2.Inria Nancy Grand EstCASSIS Project Campus ScientifiqueVandœuvre-lès-nancy CedexFrance

Personalised recommendations