Multi-exponential Lifetime Extraction in Time-Logarithmic Scale

  • Andrew V. Knyazev
  • Qun Gao
  • Koon Hoo Teo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9728)


Methods are proposed for estimating real lifetimes and corresponding coefficients from real-valued measurement data in logarithmic scale, where the data are multi-exponential, i.e. represented by linear combinations of decaying exponential functions with various lifetimes. Initial approximations of lifetimes are obtained as peaks of the first derivative of the data, where the first derivative can, e.g., be calculated in the spectral domain using the cosine Fourier transform. The coefficients corresponding to lifetimes are then estimated using the linear least squares fitting. Finally, all the coefficients and the lifetimes are optimized using the values previously obtained as initial approximations in the non-linear least squares fitting. We can fit both the data curve and its first derivative and allow simultaneous analysis of multiple curves.


Lifetime extraction Exponential Multi-exponential Least squares Fitting Numerical differentiation Dynamic ON-resistance Semiconductor 



We thank Donghyun Jin and Jesus del Alamo for providing us the raw data for their [8, Fig. 2] that we use in Sect. 7, and the corresponding results of the fit by their method, displayed in Fig. 5.


  1. 1.
    Binari, S.C., Klein, P.B., Kazior, T.E.: Trapping effects in GaN and SiC microwave fets. Proc. IEEE 90(6), 1048–1058 (2002)CrossRefGoogle Scholar
  2. 2.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math. Comput. 19(90), 297–301 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    de Prony, G.C.F.M.R.: Essai expérimental et analytique sur les lois de la Dilatabilité des fluides élastiques et sur celles de la Force expansive de la vapeur de l’eau et la vapeur de l’alkool, à différentes températures (1795)Google Scholar
  4. 4.
    Epstein, C.L., Schotland, J.: The bad truth about Laplace’s transform. SIAM Rev. 50(3), 504–520 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gutierrez-Osuna, R., Nagle, H.T., Schiffman, S.S.: Transient response analysis of an electronic nose using multi-exponential models. Sens. Actuators B Chem. 61(1–3), 170–182 (1999)CrossRefGoogle Scholar
  6. 6.
    Hansen, P.C.: Deconvolution and regularization with Toeplitz matrices. Numer. Algorithms 29(4), 323–378 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jin, D., del Alamo, J.A.: Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs. In: 2012 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 333–336 (2012)Google Scholar
  8. 8.
    Jin, D., del Alamo, J.A.: Methodology for the study of dynamic ON-resistance in high-voltage GaN field-effect transistors. IEEE Trans. Electron Devices 60(10), 3190–3196 (2013)CrossRefGoogle Scholar
  9. 9.
    Joh, J., del Alamo, J.A.: A current-transient methodology for trap analysis for GaN high electron mobility transistors. IEEE Trans. Electron Devices 58(1), 132–140 (2011)CrossRefGoogle Scholar
  10. 10.
    Kompa, G.: Basic Properties of III-V Devices - Understanding Mysterious Trapping Phenomena. Kassel University Press, Kassel (2014)Google Scholar
  11. 11.
    Lanczos, C.: Applied Analysis. Dover Publications, Mineola (1988)zbMATHGoogle Scholar
  12. 12.
    Marco, S., Samitier, J., Morante, J.R.: A novel time-domain method to analyze multicomponent exponential transients. Meas. Sci. Technol. 6(2), 135 (1995)CrossRefGoogle Scholar
  13. 13.
    Meneghesso, G., Verzellesi, G., Danesin, F., Rampazzo, F., Zanon, F., Tazzoli, A., Meneghini, M., Zanoni, E.: Reliability of GaN high-electron-mobility transistors: state of the art and perspectives. IEEE Trans. Device Mater. Reliab. 8(2), 332–343 (2008)CrossRefGoogle Scholar
  14. 14.
    Samitier, J., Lopez-Villegas, J.M., Marco, S., Camara, L., Pardo, A., Ruiz, O., Morante, J.R.: A new method to analyse signal transients in chemical sensors. Sens. Actuators B Chem. 18(1), 308–312 (1994)CrossRefGoogle Scholar
  15. 15.
    Sozza, A., Dua, C., Morvan, E., diForte Poisson, M.A., Delage, S., Rampazzo, F., Tazzoli, A., Danesin, F., Meneghesso, G., Zanoni, E., Curutchet, A., Malbert, N., Labat, N., Grimbert, B., De Jaeger, J.-C.: Evidence of traps creation in GaN/AlGaN/GaN HEMTs after a 3000 hour on-state and off-state hot-electron stress. In: IEEE International Electron Devices Meeting Technical Digest, IEDM 4p., p. 593 (2005)Google Scholar
  16. 16.
    Stoklas, R., Gregusova, D., Novak, J., Vescan, A., Kordos, P.: Investigation of trapping effects in AlGaN/GaN/Si field-effect transistors by frequency dependent capacitance and conductance analysis. Appl. Phys. Lett. 93(12), 124103 (2008)CrossRefGoogle Scholar
  17. 17.
    Weiss, L., McDonough, R.N.: Prony’s method, Z-transforms, and Pade approximation. SIAM Rev. 5(2), 145–149 (1963)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Mitsubishi Electric Research Labs (MERL)CambridgeUSA

Personalised recommendations