Advertisement

Development of Issue Sets from Social Big Data: A Case Study of Green Energy and Low-Carbon

  • Chun-Che HuangEmail author
  • Yu-Jie Fang
  • Shian-Hua Lin
  • Wen-Yau Liang
  • Shu-Rong Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9728)

Abstract

“Energy” has been one element of the development of human civilization, also a power for national industry, construction and economic development. The green energy has become the cornerstone in sustainable development to secure such energy supply but may accommodate opinions from controversial perspectives when this subject is discussed. This study develops an interactive big data system, which aims at aggregating data from Facebook, PTT, news, and provides an interactive interface for energy domain experts. The “interaction” characterizes the seamless integration between users and the system to construct the controversial issue sets of energy, which could be identified and established autonomously in this study. The approach using tags of the link in two controversial issues can help end-users effectively query on demand. The energy relevant issues can be fully aware and provided to the decision makers from the positive and negative viewpoints.

Keywords

Social big data Green energy Controversial issues Text mining 

References

  1. 1.
    Bello-Orgaz, G., Jung, J.J., Camacho, D.: Social big data: recent achievements and new challenges. Inf. Fusion 28, 45–59 (2016)CrossRefGoogle Scholar
  2. 2.
    Sutcliffe, K.M., Vogus, T.J.: Organizing for resilience. Posit. Organ. Scholarsh.: Found. New discipl. 94, 110 (2003)Google Scholar
  3. 3.
    Cobb, R.W.: Participation in American politics: The Dynamics of Agenda-Building. Johns Hopkins University Press, Baltimore (1983)Google Scholar
  4. 4.
    Bonsón, E., Torres, L., Royo, S., Flores, F.: Local e-government 2.0: social media and corporate transparency in municipalities. Gov. Inf. Q. 29(2), 123–132 (2012)CrossRefGoogle Scholar
  5. 5.
    Cambria, E., Rajagopal, D., Olsher, D., Das, D.: Big social data analysis. In: Akerkar, R. (ed.) Big Data Computing, pp. 401-414. Chapman and Hall/CRC publication (2013)Google Scholar
  6. 6.
    Manovich, L.: Trending: the promises and the challenges of big social data. In: Debates in the Digital Humanities, pp. 460–447 (2011)Google Scholar
  7. 7.
    Young, S.D.: Behavioral insights on big data: using social media for predicting biomedical outcomes. Trends Microbiol. 22(11), 601–602 (2014)CrossRefGoogle Scholar
  8. 8.
    Nguyen, T.H., Shirai, K., Velcin, J.: Sentiment analysis on social media for stock movement prediction. Expert Syst. Appl. 42(24), 9603–9961 (2015)CrossRefGoogle Scholar
  9. 9.
    Jang, H.J., Sim, J., Lee, Y., Kwon, O.: Deep sentiment analysis: mining the causality between personality-value-attitude for analyzing business ads in social media. Expert Syst. Appl. 40(18), 7492–7503 (2013)CrossRefGoogle Scholar
  10. 10.
    White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Sebastopol (2009)Google Scholar
  11. 11.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of 2nd USENIX Conference on Hot Topics in Cloud Computing, vol. 10, p. 10 (2010)Google Scholar
  12. 12.
    Anil, R., Dunning, T., Friedman, E.: Mahout in Action, pp. 1–2. Manning Publications Co., New York (2011)Google Scholar
  13. 13.
    Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Tal-Walkar, A.: MLlib: Machine Learning in Apache Spark (2015). arXiv preprint arXiv:1505.06807
  14. 14.
    Bekkerman, R.: Automatic categorization of email into folders: benchmark experiments on Enron and SRI corpora (2004)Google Scholar
  15. 15.
    Mei, Q., Liu, C., Su, H., Zhai, C.: A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In: Proceedings of 15th International Conference on World Wide Web, pp. 533–542 (2006)Google Scholar
  16. 16.
    Allan, J., Carbonell, J.G., Doddington, G., Yamron, J., Yang, Y.: Topic detection and tracking pilot study final report (1998)Google Scholar
  17. 17.
    Zhao, Q., Mitra, P.: Event detection and visualization for social text streams. In: ICWSM (2007)Google Scholar
  18. 18.
    Krause, A., Leskovec, J., Guestrin, C.: Data association for topic intensity tracking. In: Proceedings of 23rd International Conference on Machine Learning. pp. 497–504. ACM (2006)Google Scholar
  19. 19.
    Weng, J., Lee, B.S.: Event detection in Twitter. In: ICWSM, vol. 11, pp. 401–408 (2011)Google Scholar
  20. 20.
    Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.C.: Tedas: a Twitter-based event detection and analysis system. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE). pp. 1273–1276. IEEE (2012)Google Scholar
  21. 21.
    Miller, J.A., Potter, W.D., Kochut, K.J.: Knowledge, data, and models: taking an objective orientation on integrating these three. IEEE Potentials 11(4), 13–17 (1992)CrossRefGoogle Scholar
  22. 22.
    Inmon, W.H., Zachman, J.A., Geiger, J.G.: Data Stores, Data Ware-Housing, and the Zachman Framework: Managing Enterprise Knowledge. McGraw-Hill Companies, Inc., New York (1997)Google Scholar
  23. 23.
    Huang, C.C., Kuo, C.M.: Transformation and searching of semi-structured knowledge in organizations. J. Knowl. Manag. 7(4), 106–123 (2003)CrossRefGoogle Scholar
  24. 24.
    Chase, W.H.: Public issue management: the new science. Publ. Relat. J. 33(10), 25–26 (1977)Google Scholar
  25. 25.
    Kong, Q., Mao, W., Zeng, D., Wang, L.: Predicting popularity of forum threads for public events security. In: 2014 IEEE Joint Intelligence and Security Informatics Conference (JISIC), pp. 99–106 (2014)Google Scholar
  26. 26.
    Chen, C.C., Chen, Y.-T., Sun, Y., Chen, M.-C.: Life cycle modeling of news events using aging theory. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 47–59. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Chen, C.C., Chen, Y.T., Chen, M.C.: An aging theory for event life-cycle modeling. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 37(2), 237–248 (2007)CrossRefGoogle Scholar
  28. 28.
    Kim, H.G., Lee, S., Kyeong, S.: Discovering hot topics using Twitter streaming data social topic detection and geographic clustering. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 1215–1220. IEEE (2013)Google Scholar
  29. 29.
    Kuo, B.Y., Hentrich, T., Good, B.M., Wilkinson, M.D.: Tag clouds for summarizing web search results. In: Proceedings of 16th International Conference on World Wide Web, pp. 1203–1204. ACM (2007)Google Scholar
  30. 30.
    Koutrika, G., Zadeh, Z.M., Garcia-Molina, H.: Data clouds: summarizing keyword search results over structured data. In: Proceedings of 12th International Conference on Extending Database Technology: Advances in Database Technology, pp. 391–402. ACM (2009)Google Scholar
  31. 31.
    Nonaka, I., Konno, N.: The concept of “B, A”: building a foundation for knowledge creation. Knowl. Manag.: Crit. Perspect. Bus. Manag. 2(3), 53 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Chun-Che Huang
    • 1
    Email author
  • Yu-Jie Fang
    • 1
  • Shian-Hua Lin
    • 2
  • Wen-Yau Liang
    • 3
  • Shu-Rong Wu
    • 1
  1. 1.Department of Information ManagementNational Chi Nan UniversityPuli TownshipTaiwan, ROC
  2. 2.Department of Computer Science and Information EngineeringNational Chi Nan UniversityPuli TownshipTaiwan, ROC
  3. 3.Department of Information ManagementNational Changhua University of EducationChanghuaTaiwan, ROC

Personalised recommendations