Impact of Clinical Display Device on Detectability of Breast Masses in 2D Digital Mammography: A Virtual Clinical Study

  • Alaleh Rashidnasab
  • Frédéric Bemelmans
  • Nicholas W. Marshall
  • Tom Kimpe
  • Hilde Bosmans
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9699)

Abstract

This work investigates the impact of advanced clinical displays on cancer detection in 2D digital mammograms using four-alternative-forced-choice (4AFC) and a dataset of images with inserted simulated lesions. Images were displayed on a standard monitor (Barco Coronis 5MP mammo) and an advanced monitor (Barco Coronis Uniti 12MP MDMC-12132). Ill-defined margin and spiculated mass models were inserted into mammographic regions of interest using a validated physics-based insertion framework. Experiments were conducted for mass size of 8–11 mm to 2–3 mm and density of 100 % to 70 % of glandular tissue with 142 trials per condition. Five medical physicists read the dataset on both monitors. Percentage correct (PC) of detected masses for average observer and 95 % confidence intervals were determined. Paired t-test and ANOVA analysis were performed. The observers had significantly better detection rates when the dataset was read on the advanced monitor compared to the standard monitor (3 % increase in overall PC, paired p-value \(=\) 0.0076).

Keywords

Clinical display Virtual clinical trial Detection 2D digital mammography Simulated lesions DLA mass Spiculated mass 4AFC observer study 

References

  1. 1.
    Maidment, A.D.A.: Virtual clinical trials for the assessment of novel breast screening modalities. In: Fujita, H., Hara, T., Muramatsu, C. (eds.) IWDM 2014. LNCS, vol. 8539, pp. 1–8. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Elangovan, P., Warren, L.M., Mackenzie, A., Rashidnasab, A., Diaz, O., Dance, D.R., Young, K.C., Bosmans, H., Strudley, C.J., Wells, K.: Development and validation of a modelling framework for simulating 2D-mammography and breast tomosynthesis images. Phys. Med. Biol. 59(15), 4275 (2014)CrossRefGoogle Scholar
  3. 3.
    Rashidnasab, A., Elangovan, P., Yip, M., Diaz, O., Dance, D.R., Young, K.C., Wells, K.: Simulation and assessment of realistic breast lesions using fractal growth models. Phys. Med. Biol. 58(16), 5613 (2013)CrossRefGoogle Scholar
  4. 4.
    Shaheen, E., De Keyzer, F., Bosmans, H., Dance, D.R., Young, K.C., Van Ongeval, C.: The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis. Med. Phys. 41(8), 081913 (2014)CrossRefGoogle Scholar
  5. 5.
    Highnam, R., Brady, S.M., Yaffe, M.J., Karssemeijer, N., Harvey, J.: Robust breast composition measurement - VolparaTM. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds.) IWDM 2010. LNCS, vol. 6136, pp. 342–349. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alaleh Rashidnasab
    • 1
    • 2
  • Frédéric Bemelmans
    • 1
  • Nicholas W. Marshall
    • 3
  • Tom Kimpe
    • 4
  • Hilde Bosmans
    • 1
    • 3
  1. 1.Department of Imaging and PathologyKU LeuvenLeuvenBelgium
  2. 2.Institute of Nuclear MedicineUniversity College LondonLondonUK
  3. 3.Department of RadiologyUZ LeuvenLeuvenBelgium
  4. 4.BarcoKortrijkBelgium

Personalised recommendations