Advertisement

Deep Cascade Classifiers to Detect Clusters of Microcalcifications

  • Alessandro Bria
  • Claudio Marrocco
  • Nico Karssemeijer
  • Mario Molinara
  • Francesco Tortorella
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9699)

Abstract

Recent advances in Computer-Aided Detection (CADe) for the automatic detection of clustered microcalcifications on mammograms show that cascade classifiers can compete with high-end commercial systems. In this paper, we introduce a deep cascade detector where the learning algorithm of each binary pixel classifier has been redesigned in the early stopping mechanism conventionally used to avoid overfitting to the training data. In this way, we strongly increase the number of features considered in each stage of the cascade (hence the term “deep”), yet we still benefit from the cascade framework by obtaining a very fast processing of mammograms (less than one second per image). We evaluated the proposed approach on a database of full-field digital mammograms; the experiments revealed a statistically significant improvement of deep cascade with respect to the traditional cascade framework. We also obtained statistically significantly higher performance than one of the most widespread commercial CADe systems, the Hologic R2CAD ImageChecker. Specifically, at the same number of false positives per image of R2CAD (0.21), the deep cascade detected 96 % of true lesions against the 90 % of R2CAD, whereas at the same lesion sensitivity of R2CAD (90 %), we obtained 0.05 false positives per image for the deep cascade against the 0.21 of R2CAD.

Keywords

Computer aided detection Mammography Clusters of microcalcifications Cascade of classifiers 

References

  1. 1.
    Kopans, D.B.: Breast Imaging. Lippincott Williams & Wilkins, Hagerstown (2007)Google Scholar
  2. 2.
    Eadie, L.H., Taylor, P., Gibson, A.P.: A systematic review of computer-assisted diagnosis in diagnostic cancer imaging. Eur. J. Radiol. 81(1), e70–e76 (2012)CrossRefGoogle Scholar
  3. 3.
    El Naqa, I., Yang, Y., Wernick, M.N., Galatsanos, N.P., Nishikawa, R.M.: A support vector machine approach for detection of microcalcifications. IEEE Trans. Med. Imaging 21(12), 1552–1563 (2002)CrossRefGoogle Scholar
  4. 4.
    Wei, L., Yang, Y., Nishikawa, R.M., Wernick, M.N., Edwards, A.: Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Trans. Med. Imaging 24(10), 1278–1285 (2005)CrossRefGoogle Scholar
  5. 5.
    Marrocco, C., Molinara, M., D’Elia, C., Tortorella, F.: A computer-aided detection system for clustered microcalcifications. Artif. Intell. Med. 50(1), 23–32 (2010)CrossRefGoogle Scholar
  6. 6.
    Oliver, A., Torrent, A., Tortajada, M., Lladó, X., Peracaula, M., Tortajada, L., Sentís, M., Freixenet, J.: A boosting based approach for automatic micro-calcification detection. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds.) IWDM 2010. LNCS, vol. 6136, pp. 251–258. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Jing, H., Yang, Y., Nishikawa, R.M.: Detection of clustered microcalcifications using spatial point process modeling. Phys. Med. Biol. 56(1), 1–17 (2011)CrossRefGoogle Scholar
  8. 8.
    Bria, A., Karssemeijer, N., Tortorella, F.: Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications. Med. Image Anal. 18(2), 241–252 (2014)CrossRefGoogle Scholar
  9. 9.
    Viola, P., Jones, M.: Robust real-time object detection. Int. J. Comput. Vis. 57(2), 137–154 (2001)CrossRefGoogle Scholar
  10. 10.
    Bria, A., Marrocco, C., Molinara, M., Tortorella, F.: An effective learning strategy for cascaded object detection. Inf. Sci. 340–341, 17–26 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Yousef, W.A.: Assessing classifiers in terms of the partial area under the ROC curve. Comput. Stat. Data Anal. 64, 51–70 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Samuelson, F.W., Petrick, N.: Comparing image detection algorithms using resampling. In: IEEE International Symposium on Biomedical Imaging, pp. 1312–1315 (2006)Google Scholar
  13. 13.
    Samuelson, F.W., Petrick, N., Paquerault, S.: Advantages and examples of resampling for CAD evaluation. In: IEEE International Symposium on Biomedical Imaging, pp. 492–495 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alessandro Bria
    • 1
  • Claudio Marrocco
    • 1
  • Nico Karssemeijer
    • 2
  • Mario Molinara
    • 1
  • Francesco Tortorella
    • 1
  1. 1.DIEIUniversity of Cassino and Southern LatiumCassinoItaly
  2. 2.DIAGRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations