Advertisement

Whole Mastectomy Volume Reconstruction from 2D Radiographs and Its Mapping to Histology

  • Thomy Mertzanidou
  • John H. Hipwell
  • Sara Reis
  • Babak Ehteshami Bejnordi
  • Meyke Hermsen
  • Mehmet Dalmis
  • Suzan Vreemann
  • Bram Platel
  • Jeroen van der Laak
  • Nico Karssemeijer
  • Ritse Mann
  • Peter Bult
  • David J. Hawkes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9699)

Abstract

Women that are diagnosed with breast cancer often undergo surgery to remove either the tumour and some of the surrounding tissue (lumpectomy) or the whole breast (mastectomy). After surgery, the excised tissue is sliced at the pathology department, where specimen radiographs of the slices are typically acquired. Representative parts of the tissue are then sampled for further processing, staining and examination under the microscope. The results of histopathological imaging are used for tumour characterisation. As the 3D structure of the specimen is inevitably lost during specimen handling, reconstructing a volume from individual specimen slices could facilitate the correlation of histology to radiological imaging. This work proposes a novel method for a whole specimen volume reconstruction and is validated on six mastectomy cases. We also demonstrate how these volumes can be used as a means to map multiple histology slides to a whole mastectomy image (MRI or CT).

Keywords

3D volume reconstruction Breast histology-radiology registration 

Notes

Acknowledgements

This study was funded by the European 7th Framework Program grant VPH-PRISM (FP7-ICT-2011-9, 601040) and the Engineering and Physical Sciences Research Council grant MIMIC (EP/K020439/1).

References

  1. 1.
    Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image Vis. Comput. 19(1), 25–31 (2001)CrossRefGoogle Scholar
  2. 2.
    Pitiot, A., Guimond, A.: Geometrical regularization of displacement fields for histological image registration. Med. Image Anal. 12(1), 16–25 (2008)CrossRefGoogle Scholar
  3. 3.
    Alic, L., Haeck, J.C., Bol, K., Klein, S., van Tiel, S.T., Wielepolski, P.A., de Jong, M., Niessen, W.J., Bernsen, M., Veenland, J.F.: Facilitating tumor functional assessment by spatially relating 3D tumor histology and in vivo MRI: image registration approach. PloS ONE 6(8), e22835 (2011)CrossRefGoogle Scholar
  4. 4.
    Nikou, C., Heitz, F., Nehlig, A., Namer, I., Armspach, J.: A robust statistics-based global energy function for the alignment of serially acquired autoradiographic sections. J. Neurosci. Methods 124(1), 93–102 (2003)CrossRefGoogle Scholar
  5. 5.
    Yushkevich, P.A., Avants, B.B., Ng, L., Hawrylycz, M., Burstein, P.D., Zhang, H., Gee, J.C.: 3D mouse brain reconstruction from histology using a coarse-to-fine approach. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds.) WBIR 2006. LNCS, vol. 4057, pp. 230–237. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bagci, U., Bai, L.: Automatic best reference slice selection for smooth volume reconstruction of a mouse brain from histological images. Med. Imaging, IEEE Trans. 29(9), 1688–1696 (2010)CrossRefGoogle Scholar
  7. 7.
    Feuerstein, M., Heibel, H., Gardiazabal, J., Navab, N., Groher, M.: Reconstruction of 3-D histology images by simultaneous deformable registration. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 582–589. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Cifor, A., Bai, L., Pitiot, A.: Smoothness-guided 3-D reconstruction of 2-D histological images. Neuroimage 56(1), 197–211 (2011)CrossRefGoogle Scholar
  9. 9.
    Arganda-Carreras, I., Fernández-González, R., Muñoz-Barrutia, A., Ortiz-De-Solorzano, C.: 3D reconstruction of histological sections: application to mammary gland tissue. Microsc. Res. Tech. 73(11), 1019–1029 (2010)CrossRefGoogle Scholar
  10. 10.
    Clarke, G., Murray, M., Holloway, C., Liu, K., Zubovits, J., Yaffe, M.: 3D pathology volumetric technique: a method for calculating breast tumour volume from whole-mount serial section images. Int. J. Breast Cancer 2012, 691205 (2012)CrossRefGoogle Scholar
  11. 11.
    Reis, S., Eiben, B., Mertzanidou, T., Hipwell, J., Hermsen, M., van der Laak, J., Pinder, S., Bult, P., Hawkes, D.: Minimum slice spacing required to reconstruct 3D shape for serial sections of breast tissue for comparison with medical imaging. In: SPIE Medical Imaging, p. 94200K. International Society for Optics and Photonics (2015)Google Scholar
  12. 12.
    Mertzanidou, T., Hipwell, J., Dalmis, M., Platel, B., van der Laak, J., Mann, R., Karssemeijer, N., Bult, P., Hawkes, D.: Towards spatial correspondence between specimen and in-vivo breast imaging. In: Fujita, H., Hara, T., Muramatsu, C. (eds.) IWDM 2014. LNCS, vol. 8539, pp. 674–680. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast mr images. Med. Imaging, IEEE Trans. 18(8), 712–721 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Thomy Mertzanidou
    • 1
  • John H. Hipwell
    • 1
  • Sara Reis
    • 1
  • Babak Ehteshami Bejnordi
    • 2
  • Meyke Hermsen
    • 4
  • Mehmet Dalmis
    • 2
  • Suzan Vreemann
    • 2
  • Bram Platel
    • 2
  • Jeroen van der Laak
    • 2
  • Nico Karssemeijer
    • 2
  • Ritse Mann
    • 3
  • Peter Bult
    • 4
  • David J. Hawkes
    • 1
  1. 1.Centre for Medical Image ComputingUniversity College LondonLondonUK
  2. 2.Diagnostic Image Analysis GroupRadboud University Medical CentreNijmegenThe Netherlands
  3. 3.Department of RadiologyRadboud University Medical CentreNijmegenThe Netherlands
  4. 4.Department of PathologyRadboud University Medical CentreNijmegenThe Netherlands

Personalised recommendations