A Pilot Study on Radiation Dose from Combined Mammography Screening in Australia

  • Jason Tse
  • Roger Fulton
  • Mary Rickard
  • Patrick Brennan
  • Donald McLean
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9699)


This article presents the results of a pilot dose survey including fifty patients who underwent combined screening: full field digital mammography (FFDM) plus digital breast tomosynthesis (DBT). The study also aimed to demonstrate the different dosimetric outcome from using different glandularity assumptions and dosimetry methods. The mean glandular dose to each patient was computed using Dance’s method with UK glandularity assumption. The calculations were repeated using Wu/Boone’s method with the “50–50” breast assumption and the results compared to those using Dance’s method. For the typical breasts, the dose from combined examination was around 9.56 mGy: 4.26 mGy from two-view FFDM and 5.30 mGy from two-view DBT. Adopting UK glandularity assumption was believed to more realistically reflect the population dose. The comparison between Dance’s and Wu/Boone’s methods indicated that the latter tended to show lower dose values with mean differences of −3.6 % for FFDM and −5.5 % for DBT.


Radiation dose Digital mammography Tomosynthesis 


  1. 1.
    Rose, S.L., et al.: Implementation of breast tomosynthesis in a routine screening practice: an observational study. AJR Am. J. Roentgenol. 200, 1401–1408 (2013)CrossRefGoogle Scholar
  2. 2.
    Ciatto, S., et al.: Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. Lancet Oncol. 14, 583–589 (2013)CrossRefGoogle Scholar
  3. 3.
    Skaane, P., et al.: Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. Radiology 267, 47–56 (2013)CrossRefGoogle Scholar
  4. 4.
    Dance, D.R., Young, K.C., van Engen, R.E.: Further factors for the estimation of mean glandular dose using the United Kingdom, European and IAEA breast dosimetry protocols. Phys. Med. Biol. 54, 4361–4372 (2009)CrossRefGoogle Scholar
  5. 5.
    Dance, D.R., Young, K.C., van Engen, R.E.: Estimation of mean glandular dose for breast tomosynthesis: factors for use with the UK, European and IAEA breast dosimetry protocols. Phys. Med. Biol. 56, 453–471 (2011)CrossRefGoogle Scholar
  6. 6.
    Wu, X., Barnes, G.T., Tucker, D.M.: Spectral dependence of glandular tissue dose in screen-film mammography. Radiology 179, 143–148 (1991)CrossRefGoogle Scholar
  7. 7.
    Wu, X., Gingold, E.L., Barnes, G.T., Tucker, D.M.: Normalized average glandular dose in molybdenum target-rhodium filter and rhodium target-rhodium filter mammography. Radiology 193, 83–89 (1994)CrossRefGoogle Scholar
  8. 8.
    Boone, J.M.: Normalized glandular dose (DgN) coefficients for arbitrary X-ray spectra in mammography: computer-fit values of Monte Carlo derived data. Med. Phys. 29, 869–875 (2002)CrossRefGoogle Scholar
  9. 9.
    Sechopoulos, I., Suryanarayanan, S., Vedantham, S., D’Orsi, C., Karellas, A.: Computation of the glandular radiation dose in digital tomosynthesis of the breast. Med. Phys. 34, 221–232 (2007)CrossRefGoogle Scholar
  10. 10.
    Sechopoulos, I., D’Orsi, C.: Glandular radiation dose in tomosynthesis of the breast using tungsten targets. J. Appl. Clin. Med. Phys. 9, 161–171 (2008)CrossRefGoogle Scholar
  11. 11.
    Sechopoulos, I., et al.: Radiation dosimetry in digital breast tomosynthesis: report of AAPM tomosynthesis subcommittee task group 223. Med. Phys. 41, 091501 (2014)CrossRefGoogle Scholar
  12. 12.
    Dance, D.R., Skinner, C.L., Young, K.C., Beckett, J.R., Kotre, C.J.: Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Phys. Med. Biol. 45, 3225–3240 (2000)CrossRefGoogle Scholar
  13. 13.
    Yaffe, M.J., et al.: The myth of the 50–50 breast. Med. Phys. 36, 5437–5443 (2009)CrossRefGoogle Scholar
  14. 14.
    Vedantham, S., Shi, L., Karellas, A., O’Connell, A.M.: Dedicated breast CT: fibroglandular volume measurements in a diagnostic population. Med. Phys. 39, 7317–7328 (2012)CrossRefGoogle Scholar
  15. 15.
    Dance, D.R., Strudley, C.J., Young, K.C., Oduko, J.M., Whelehan, P.J., Mungutroy, E.: Comparison of breast doses for digital tomosynthesis estimated from patient exposures and using PMMA breast phantoms. In: Maidment, A.D., Bakic, P.R., Gavenonis, S. (eds.) IWDM 2012. LNCS, vol. 7361, pp. 316–321. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Beckett, J.R., Kotre, C.J.: Dosimetric implications of age related glandular changes in screening mammography. Phys. Med. Biol. 45, 801–813 (2000)CrossRefGoogle Scholar
  17. 17.
    Tromans, C.E., Highnam, R., Morrish, O., Black, R., Tucker, L., Gilbert, F., Brady, S.M.: Patient specific dose calculation using volumetric breast density for mammography and tomosynthesis. In: Fujita, H., Hara, T., Muramatsu, C. (eds.) IWDM 2014. LNCS, vol. 8539, pp. 158–165. Springer, Heidelberg (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jason Tse
    • 1
    • 2
  • Roger Fulton
    • 1
  • Mary Rickard
    • 1
    • 3
  • Patrick Brennan
    • 1
  • Donald McLean
    • 1
    • 2
  1. 1.Faculty of Health SciencesUniversity of SydneySydneyAustralia
  2. 2.Medical Physics and Radiation EngineeringCanberra HospitalCanberraAustralia
  3. 3.Sydney Breast ClinicSydneyAustralia

Personalised recommendations