Simulation and Visualization to Support Breast Surgery Planning

  • Joachim Georgii
  • Torben Paetz
  • Markus Harz
  • Christina Stoecker
  • Michael Rothgang
  • Joseph Colletta
  • Kathy Schilling
  • Margrethe Schlooz-Vries
  • Ritse M. Mann
  • Horst K. Hahn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9699)

Abstract

Today, breast surgeons plan their procedures using pre-operatively placed metal clips or radioactive seeds and radiological images. These images show the breast in a positioning different from the one during surgery. We show a research prototype that eases the surgeon’s planning task by providing 3D visualizations based on the radiological images. With a FEM-based deformation simulation, we mimic the real surgical scenario. In particular, we have developed a ligament model that increases the robustness of a fully automatic prone-supine deformation simulation, and we have developed specific visualization methods to aid intra-operative breast lesion localization.

References

  1. 1.
    Behrenbruch, C., Marias, K., Armitage, P., Moore, N., Clarke, J., Brady, M.: Prone-supine breast MRI registration for surgical visualisation. In: Proceedings of Medical Image Understanding and Analysis, pp. 109–112 (2001)Google Scholar
  2. 2.
    Carter, T.J., Tanner, C., Crum, W.R., Beechey-Newman, N., Hawkes, D.J.: A framework for image-guided breast surgery. In: Yang, G.Z., Jiang, T.-Z., Shen, D., Gu, L., Yang, J. (eds.) MIAR 2006. LNCS, vol. 4091, pp. 203–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Eguchi, T., Takasuna, K., Kitazawa, A., Fukuzawa, Y., Sakaue, Y., Yoshida, K., Matsubara, M.: Three-dimensional imaging navigation during a lung segmentectomy using an iPad. Eur. J. Cardio-Thorac. Surg. Official J. Eur. Assoc. Cardio-thorac. Surg. 41(4), 893–897 (2012)CrossRefGoogle Scholar
  4. 4.
    Eiben, B., Vavourakis, V., Hipwell, J., Kabus, S., Buelow, T., Lorenz, C., Mertzanidou, T., Reis, S., Williams, N., Keshtgar, M., Hawkes, D.: Symmetric biomechanically guided prone-to-supine breast image registration. Ann. Biomed. Eng. 44(1), 154–173 (2016)CrossRefGoogle Scholar
  5. 5.
    Gavaghan, K.A., Peterhans, M., Oliveira-Santos, T., Weber, S.: A portable image overlay projection device for computer-aided open liver surgery. IEEE Trans. Bio-Med. Eng. 58(6), 1855–1864 (2011)CrossRefGoogle Scholar
  6. 6.
    Han, L., Hipwell, J., Eiben, B., Barratt, D., Modat, M., Ourselin, S., Hawkes, D.: A nonlinear biomechanical model based registration method for aligning prone and supine mr breast images. IEEE Trans. Med. Imaging 33(3), 682–694 (2014)CrossRefGoogle Scholar
  7. 7.
    Hansen, C., Zidowitz, S., Ritter, F., Lange, C., Oldhafer, K., Hahn, H.: Risk maps for liver surgery. Int. J. Comp. Ass. Radiol. Surg. 8, 419–428 (2013)CrossRefGoogle Scholar
  8. 8.
    Harz, M.T.: Complexity Reduction in Image-Based Breast Cancer Care. Ph.D. thesis, University of Bremen (2014). http://elib.suub.uni-bremen.de/edocs/00104007-1.pdf
  9. 9.
    Koehn, A., Matsuyama, R., Endo, I., Schenk, A.: Liver surgery data and augmented reality in the operation room: experiences using a tablet device. Int. J. Comput. Assist. Radiol. Surg. Surg./Interv. Navig. S111 (2014)Google Scholar
  10. 10.
    Lang, H., Radtke, A., Hindennach, M., Schroeder, T., Fruehauf, N., Malago, M., Bourquain, H., Peitgen, H., Oldhafer, K., Broelsch, C.: Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch. Surg. 140, 629–638 (2005)CrossRefGoogle Scholar
  11. 11.
    Liao, H., Inomata, T., Sakuma, I., Dohi, T.: 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay. IEEE Trans. Bio-Med. Eng. 57(6), 1476–1486 (2010)CrossRefGoogle Scholar
  12. 12.
    Limmer, S., Stoecker, C., Dicken, V., Krass, S., Wolken, H., Kujath, P.: Computer-assisted visualization of central lung tumours based on 3-dimensional reconstruction. In: CT Scanning Techniques and Applications, pp. 205–228 (2011)Google Scholar
  13. 13.
    Moltz, J., Bornemann, L., Kuhnigk, J.M., Dicken, V., Peitgen, E., Meier, S., Peitgen, H.O.: Advanced segmentation techniques for lung nodules, liver metastases, and enlarged lymph nodes in CT scans. IEEE J. Select. Topics Sig. Process. 3, 122–134 (2009)CrossRefGoogle Scholar
  14. 14.
    Nakamura, R., Nagashima, T., Sakakibara, M., Sangai, T., Fujimoto, H., Arai, M., Shida, T., Kaneoya, K., Ueda, T., Nakatani, Y., Hashimoto, H., Miyazaki, M.: Breast-conserving surgery using supine magnetic resonance imaging in breast cancer patients receiving neoadjuvant chemotherapy. Breast 17(3), 245–251 (2008)CrossRefGoogle Scholar
  15. 15.
    Pätz, T., Harz, M., Wang, L., Stöcker, C., Schilling, K., Colletta, J., Schlooz-Vries, M., Hahn, H., Georgii, J.: Sliding motion in breast deformation modeling. In: 3rd MICCAI Workshop on Breast Image Analysis (2015)Google Scholar
  16. 16.
    Razavi, M., Wang, L., Gubern-Merida, A., Ivanovska, T., Laue, H., Karssemeijer, N., Hahn, H.K.: Towards accurate segmentation of fibroglandular tissue in breast mri using fuzzy c-means and skin-folds removal. In: 18th International Conference on Image Analysis and Processing (2015)Google Scholar
  17. 17.
    Saji, H., Inoue, T., Kato, Y., Shimada, Y., Hagiwara, M., Kudo, Y., Akata, S., Ikeda, N.: Virtual segmentectomy based on high-quality three-dimensional lung modelling from computed tomography images. Interact. CardioVasc. Thorac. Surg. 17, 227–232 (2013)CrossRefGoogle Scholar
  18. 18.
    Schenk, A., Haemmerich, D., Preusser, T.: Planning of image-guided interventions in the liver. IEEE Pulse 2, 48–55 (2011)CrossRefGoogle Scholar
  19. 19.
    Stoecker, C., Bornemann, L., Dicken, V., Krass, S., Kuhnigk, J., Zidowitz, S., Peitgen, H.: CT-based patient individual anatomical modeling of the lung and its impact on thoracic surgery. In: World Congress on Medical Physics 2009, IFMBE Proceedings, vol. 25. pp. 1592–1595 (2010)Google Scholar
  20. 20.
    Stoecker, C., Harz, M., Schlooz-Vries, M., Mann, R., Schilling, K., Colletta, J., Georgii, J., Paetz, T., Hahn, H.K.: MRI-based visualization and augmented reality for breast surgery planning and guidance. In: Proceedings of CURAC (2015)Google Scholar
  21. 21.
    Stoecker, C., Welter, S., Klemm, W., Beckers, F., Witte, B., Krass, S.: Computer assistance in lung surgery for segment resections and minimally invasive surgery. In: Proceedings of CURAC, pp. 299–304 (2015)Google Scholar
  22. 22.
    Volonte, F., Robert, J., Ratib, O., Triponez, F.: A lung segmentectomy performed with 3D reconstruction images available on the operating table with an iPad. Interact. CardioVasc. Thorac. Surg. 12, 1066–1068 (2011)CrossRefGoogle Scholar
  23. 23.
    Wang, L., Filippatos, K., Friman, O., Hahn, H.K.: Fully automated segmentation of the pectoralis muscle boundary in breast MR images (2011)Google Scholar
  24. 24.
    Wang, L., Platel, B., Ivanovskaya, T., Harz, M., Hahn, H.: Fully automatic breast segmentation in 3d breast MRI. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1024–1027 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Joachim Georgii
    • 1
  • Torben Paetz
    • 1
  • Markus Harz
    • 1
  • Christina Stoecker
    • 1
  • Michael Rothgang
    • 1
  • Joseph Colletta
    • 2
  • Kathy Schilling
    • 2
  • Margrethe Schlooz-Vries
    • 3
  • Ritse M. Mann
    • 3
  • Horst K. Hahn
    • 1
  1. 1.Institute for Medical Image ComputingFraunhofer MEVISBremenGermany
  2. 2.Boca Raton Regional HospitalBoca RatonUSA
  3. 3.Radboud University Medical CentreNijmegenThe Netherlands

Personalised recommendations