Advertisement

BFS-Based Model Checking of Linear-Time Properties with an Application on GPUs

  • Anton WijsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9780)

Abstract

Efficient algorithms have been developed to model check liveness properties, such as the well-known Nested Depth-First Search, which uses a depth-first search (DFS) strategy. However, in some settings, DFS is not a suitable option. For instance, when considering distributed model checking on a cluster, or many-core model checking using a Graphics Processing Unit (GPU), Breadth-First Search (BFS) is a more natural choice, at least for basic reachability analysis. Liveness property checking, however, requires the detection of (accepting) cycles, and BFS is not very suitable to detect these on-the-fly. In this paper, we consider how a model checker that completely runs on a GPU can be extended to efficiently verify whether finite-state concurrent systems satisfy liveness properties. We exploit the fact that the state space is the product of the behaviour of several parallel automata. The result of this work is the very first GPU-based model checker that can check liveness properties.

Keywords

Model Check Graphic Processing Unit Global Memory Label Transition System Liveness Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alpern, B., Schneider, F.: Defining liveness. Inform. Process. Lett. 21(4), 181–185 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    Barnat, J., Bauch, P., Brim, L., Češka, M.: Designing fast LTL model checking algorithms for many-core GPUs. J. Parall. Distrib. Comput. 72, 1083–1097 (2012)CrossRefGoogle Scholar
  4. 4.
    Barnat, J., Brim, L., Ročkai, P.: A time-optimal on-the-fly parallel algorithm for model checking of weak LTL properties. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 407–425. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Barnat, J., Brim, L., Stříbrná, J.: Distributed LTL model-checking in SPIN. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 200–216. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Bartocci, E., DeFrancisco, R., Smolka, S.: Towards a GPGPU-parallel SPIN model checker. In: SPIN, pp. 87–96. ACM (2014)Google Scholar
  7. 7.
    Blom, S., van de Pol, J., Weber, M.: LTSmin: distributed and symbolic reachability. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 354–359. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Bošnački, D., Edelkamp, S., Sulewski, D., Wijs, A.: Parallel probabilistic model checking on general purpose graphic processors. STTT 13(1), 21–35 (2011)CrossRefGoogle Scholar
  9. 9.
    Ceška, M., Pilar, P., Paoletti, N., Brim, L., Kwiatkowska, M.: PRISM-PSY: precise GPU-accelerated parameter synthesis for stochastic systems. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 367–384. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_21 CrossRefGoogle Scholar
  10. 10.
    Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory efficient algorithms for the verification of temporal properties. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 233–242. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  11. 11.
    Dill, D.: The murphi verification system. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  12. 12.
    Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved multi-core nested depth-first search. In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 269–283. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Filippidis, I., Holzmann, G.: An improvement of the piggyback algorithm for parallel model checking. In: SPIN, pp. 48–57. ACM (2014)Google Scholar
  14. 14.
    Geldenhuys, J., Valmari, A.: Tarjan’s algorithm makes on-the-Fly LTL verification more efficient. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 205–219. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  16. 16.
    Holzmann, G.J.: Parallelizing the spin model checker. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 155–171. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: SPIN, pp. 23–32. American Mathematical Society (1996)Google Scholar
  18. 18.
    Johnson, D.: Finding all the elementary circuits of a directed graph. SIAM J. Comput. 4(1), 77–84 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kahn, A.: Topological sorting of large networks. Commun. ACM 5(11), 558–562 (1962)CrossRefzbMATHGoogle Scholar
  20. 20.
    Klein, J., Baier, C.: Experiments with deterministic \(\omega \)-automata for formulas of linear temporal logic. TCS 363(2), 182–195 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kupferman, O.: Automata theory and model checking. In: Clarke, E.M., Henzinger, T.A., Veith, H. (eds.) Handbook of Model Checking. Springer, New York (2015)Google Scholar
  22. 22.
    Kurshan, R.P., Levin, V., Minea, M., Peled, D.A., Yenigün, H.: Static partial order reduction. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 345–357. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  23. 23.
    Laarman, A., Langerak, R., van de Pol, J., Weber, M., Wijs, A.: Multi-core nested depth-first search. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 321–335. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Lang, F.: Refined interfaces for compositional verification. In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 159–174. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Molnár, V., Darvas, D., Vörös, A., Bartha, T.: Saturation-based incremental LTL model checking with inductive proofs. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 643–657. Springer, Heidelberg (2015)Google Scholar
  26. 26.
    Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Pelánek, R.: Properties of state spaces and their applications. STTT 10(5), 443–454 (2008)CrossRefGoogle Scholar
  28. 28.
    Rabin, M.: Decidability of second order theories and automata on infinite trees. Trans. AMS 141, 1–35 (1969)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Sun, J., Liu, Y., Dong, J.S., Wang, H.H.: Specifying and verifying event-based fairness enhanced systems. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 5–24. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp. 332–344. IEEE (1986)Google Scholar
  33. 33.
    Wijs, A.: GPU accelerated strong and branching bisimilarity checking. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 368–383. Springer, Heidelberg (2015)Google Scholar
  34. 34.
    Wijs, A.J., Bošnački, D.: Improving GPU sparse matrix-vector multiplication for probabilistic model checking. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 98–116. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Wijs, A., Bošnački, D.: GPUexplore: many-core on-the-fly state space exploration using GPUs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 233–247. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  36. 36.
    Wijs, A., Bošnački, D.: Many-Core On-The-Fly Model Checking of Safety Properties Using GPUs. STTT (2016)Google Scholar
  37. 37.
    Wijs, A., Katoen, J.-P., Bošnački, D.: GPU-based graph decomposition into strongly connected and maximal end components. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 310–326. Springer, Heidelberg (2014)Google Scholar
  38. 38.
    Wu, Z., Liu, Y., Liang, Y., Sun, J.: GPU accelerated counterexample generation in LTL model checking. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 413–429. Springer, Heidelberg (2014)Google Scholar
  39. 39.
    Wu, Z., Liu, Y., Sun, J., Shi, J., Qin, S.: GPU accelerated on-the-fly reachability checking. In: ICECCS, pp. 100–109. IEEE (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations