Advertisement

A SAT-Based Counterexample Guided Method for Unbounded Synthesis

  • Alexander LeggEmail author
  • Nina Narodytska
  • Leonid Ryzhyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9780)

Abstract

Reactive synthesis techniques based on constructing the winning region of the system have been shown to work well in many cases but suffer from state explosion in others. A different approach, proposed recently, applies SAT solvers in a counterexample guided framework to solve the synthesis problem. However, this method is limited to synthesising systems that execute for a bounded number of steps and is incomplete for synthesis with unbounded safety and reachability objectives. We present an extension of this technique to unbounded synthesis. Our method applies Craig interpolation to abstract game trees produced by counterexample guided search in order to construct a monotonic sequence of may-losing regions. Experimental results based on SYNTCOMP 2015 competition benchmarks show this to be a promising alternative that solves some previously intractable instances.

References

  1. 1.
    Syntcomp 2015 results. http://syntcomp.cs.unisaarland.de/syntcomp2015/experiments/. Accessed 29 Jan 2016
  2. 2.
    Audemard, G., Simon, L.: Lazy clause exchange policy for parallel SAT solvers. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 197–205. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  5. 5.
    Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Brenguier, R., Pérez, G.A., Raskin, J., Sankur, O.: AbsSynthe: abstract synthesis from succinct safety specifications. In: Workshop on Synthesis, SYNT, pp. 100–116 (2014)Google Scholar
  7. 7.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10^{20}\) states and beyond. In: Symposium on Logic in Computer Science, pp. 428–439 (1990)Google Scholar
  8. 8.
    Chiang, T.W., Jiang, J.H.R.: Property-directed synthesis of reactive systems from safety specifications. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015, pp. 794–801 (2015)Google Scholar
  9. 9.
    Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Log. 22(3), 250–268 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eèn, N., Legg, A., Narodytska, N., Ryzhyk, L.: SAT-based strategy extraction in reachability games. In: AAAI Conference on Artificial Intelligences, AAAI, pp. 3738–3745 (2015)Google Scholar
  11. 11.
    Ehlers, R.: Symbolic bounded synthesis. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 365–379. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 219–234. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Finkbeiner, B., Schewe, S.: Bounded synthesis. Softw. Tools Technol. Transf. STTT 15(5–6), 519–539 (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Jacobs, S., Bloem, R., Brenguier, R., Ehlers, R., Hell, T., Könighofer, R., Pérez, G.A., Raskin, J., Ryzhyk, L., Sankur, O., Seidl, M., Tentrup, L., Walker, A.: The first reactive synthesis competition (SYNTCOMP 2014). Computing Research Repository, CoRR abs/1506.08726 (2015). http://arxiv.org/abs/1506.08726
  15. 15.
    McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Dransfield, M.R., Marek, V.W., Truszczyński, M.: Satisfiability and computing van der Waerden numbers. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Morgenstern, A., Gesell, M., Schneider, K.: Solving games using incremental induction. In: Johnsen, E.B., Petre, L. (eds.) IFM 2013. LNCS, vol. 7940, pp. 177–191. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Narodytska, N., Legg, A., Bacchus, F., Ryzhyk, L., Walker, A.: Solving games without controllable predecessor. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 533–540. Springer, Heidelberg (2014)Google Scholar
  19. 19.
    Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Log. 62(3), 981–998 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rollini, S.F., Alt, L., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: PeRIPLO: a framework for producing effective interpolants in SAT-based software verification. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 683–693. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  22. 22.
    Walker, A., Ryzhyk, L.: Predicate abstraction for reactive synthesis. In: Formal Methods in Computer-Aided Design FMCAD, pp. 219–226 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alexander Legg
    • 1
    Email author
  • Nina Narodytska
    • 2
  • Leonid Ryzhyk
    • 2
  1. 1.Data61, CSIRO (formerly NICTA) and UNSWSydneyAustralia
  2. 2.Samsung Research AmericaMountain ViewUSA

Personalised recommendations