Advertisement

Solving Parity Games via Priority Promotion

  • Massimo Benerecetti
  • Daniele Dell’Erba
  • Fabio MogaveroEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9780)

Abstract

We consider parity games, a special form of two-player infinite-duration games on numerically labelled graphs, whose winning condition requires that the maximal value of a label occurring infinitely often during a play be of some specific parity. The problem has a rather intriguing status from a complexity theoretic viewpoint, since it belongs to the class Open image in new window , and still open is the question whether it can be solved in polynomial time. Parity games also have great practical interest, as they arise in many fields of theoretical computer science, most notably logic, automata theory, and formal verification. In this paper, we propose a new algorithm for the solution of the problem, based on the idea of promoting vertices to higher priorities during the search for winning regions. The proposed approach has nice computational properties, exhibiting the best space complexity among the currently known solutions. Experimental results on both random games and benchmark families show that the technique is also very effective in practice.

Keywords

Successor Function Region Pair Compatibility Relation Model Check Problem Verification Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 160(2), 781–793 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T., Kupferman, O.: Alternating-time temporal logic. JACM 49(5), 672–713 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Apt, K., Grädel, E.: Lectures in Game Theory for Computer Scientists. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Benerecetti, M., Mogavero, F., Murano, A.: Substructure temporal logic. In: LICS 2013, pp. 368–377. IEEE Computer Society (2013)Google Scholar
  5. 5.
    Benerecetti, M., Mogavero, F., Murano, A.: Reasoning about substructures and games. TOCL 16(3), 25:1–25:46 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Berwanger, D., Grädel, E.: Games and model checking for guarded logics. In: Nieuwenhuis, R., Voronkov, A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 70–84. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Berwanger, D., Grädel, E.: Fixed-point logics and solitaire games. TCS 37(6), 675–694 (2004)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Berwanger, D., Grädel, E., Kaiser, L., Rabinovich, R.: Entanglement and the complexity of directed graphs. TCS 463, 2–25 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chatterjee, K., Doyen, L.: Energy parity games. TCS 458, 49–60 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chatterjee, K., Doyen, L., Henzinger, T., Raskin, J.-F.: Generalized mean-payoff and energy games. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 505–516. Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  12. 12.
    Chatterjee, K., Henzinger, T., Horn, F.: Finitary winning in omega-regular games. TOCL 11(1), 1:1–1:26 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Chatterjee, K., Henzinger, T., Jurdziński, M.: Mean-payoff parity games. In: LICS 2005, pp. 178–187. IEEE Computer Society (2005)Google Scholar
  14. 14.
    Chatterjee, K., Henzinger, T., Piterman, N.: Strategy Logic. IC 208(6), 677–693 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Condon, A.: The complexity of stochastic games. IC 96(2), 203–224 (1992)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ehrenfeucht, A., Mycielski, J.: Positional strategies for mean payoff games. IJGT 8(2), 109–113 (1979)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Emerson, E., Jutla, C.: Tree automata, mucalculus, and determinacy. In: FOCS 1991, pp. 368–377. IEEE Computer Society (1991)Google Scholar
  18. 18.
    Emerson, E.A., Jutla, C.S., Sistla, A.P.: On model-checking for fragments of \(\mu \)-calculus. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 385–396. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  19. 19.
    Emerson, E., Jutla, C., Sistla, A.: On model checking for the mucalculus and its fragments. TCS 258(1–2), 491–522 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Emerson, E., Lei, C.-L.: Temporal reasoning under generalized fairness constraints. In: Monien, B., Vidal-Naquet, G. (eds.) STACS 1986. LNCS, vol. 210, pp. 267–278. Springer, Heidelberg (1986)Google Scholar
  21. 21.
    Fearnley, J.: Non-oblivious strategy improvement. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 212–230. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Fearnley, J., Lachish, O.: Parity games on graphs with medium tree-width. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 303–314. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Fearnley, J., Schewe, S.: Time and parallelizability results for parity games with bounded treewidth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 189–200. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Fellows, M., Koblitz, N.: Self-witnessing polynomial-time complexity and prime factorization. In: CSCT 1992, pp. 107–110. IEEE Computer Society (1992)Google Scholar
  25. 25.
    Fellows, M., Koblitz, N.: Self-witnessing polynomial-time complexity and prime factorization. DCC 2(3), 231–235 (1992)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Fijalkow, N., Zimmermann, M.: Cost-parity and cost-streett games. In: FSTTCS 2012. LIPIcs, vol. 18, pp. 124–135. Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  27. 27.
    Fijalkow, N., Zimmermann, M.: Cost-parity and cost-streett games. LMCS 10(2), 1–29 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Friedmann, O., Lange, M.: Solving parity games in practice. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 182–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  29. 29.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  30. 30.
    Gurvich, V., Karzanov, A., Khachivan, L.: Cyclic games and an algorithm to find minimax cycle means in directed graphs. USSRCMMP 28(5), 85–91 (1990)zbMATHGoogle Scholar
  31. 31.
    Jurdziński, M.: Deciding the winner in parity games is in UP \(\cap \) co-Up. IPL 68(3), 119–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  33. 33.
    Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. In: SODA 2006, pp. 117–123. Society for Industrial and Applied Mathematics (2006)Google Scholar
  34. 34.
    Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm for solving parity games. SJM 38(4), 1519–1532 (2008)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Klarlund, N., Kozen, D.: Rabin measures and their applications to fairness and automata theory. In: LICS 1991, pp. 256–265. IEEE Computer Society (1991)Google Scholar
  36. 36.
    Kupferman, O., Vardi, M.: Weak alternating automata and tree automata emptiness. In: STOC 1998, pp. 224–233. Association for Computing Machinery (1998)Google Scholar
  37. 37.
    Martin, A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Martin, A.: A purely inductive proof of borel determinacy. In: SPM 1982. Recursion Theory, pp. 303–308. American Mathematical Society and Association for Symbolic Logic (1985)Google Scholar
  39. 39.
    McNaughton, R.: Infinite games played on finite graphs. APAL 65, 149–184 (1993)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: What makes Atl* decidable? a decidable fragment of strategy logic. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 193–208. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  41. 41.
    Mogavero, F., Murano, A., Perelli, G., Vardi, M.: Reasoning about strategies: on the model-checking problem. TOCL 15(4), 34:1–34:42 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Mogavero, F., Murano, A., Sorrentino, L.: On promptness in parity games. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 601–618. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  43. 43.
    Mogavero, F., Murano, A., Vardi, M.: Reasoning About Strategies. In: FSTTCS 2010. LIPIcs, vol. 8, pp. 133–144. Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  44. 44.
    Mostowski, A.: Regular expressions for infinite trees and a standard form of automata. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 157–168. Springer, Heidelberg (1984)Google Scholar
  45. 45.
    Mostowski, A.: Games with Forbidden Positions. University of Gdańsk, Gdańsk, Poland, Technical report (1991)Google Scholar
  46. 46.
    Obdržálek, J.: Fast mu-calculus model checking when tree-width is bounded. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  47. 47.
    Obdržálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  48. 48.
    Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  49. 49.
    Schewe, S.: An optimal strategy improvement algorithm for solving parity and payoff games. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 369–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  50. 50.
    Schewe, S.: ATL* satisfiability is 2EXPTIME-complete. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 373–385. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  51. 51.
    Schewe, S., Finkbeiner, B.: Satisfiability and finite model property for the alternating-Time \(\mu \)-calculus. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 591–605. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  52. 52.
    Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  53. 53.
    Wilke, T.: Alternating tree automata, parity games, and modal mu calculus. BBMS 8(2), 359–391 (2001)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. TCS 200(1–2), 135–183 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Zwick, U., Paterson, M.: The complexity of mean payoff games on graphs. TCS 158(1–2), 343–359 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Massimo Benerecetti
    • 1
  • Daniele Dell’Erba
    • 1
  • Fabio Mogavero
    • 2
    Email author
  1. 1.Università Degli Studi di Napoli Federico IINaplesItaly
  2. 2.Oxford UniversityOxfordUK

Personalised recommendations