Advertisement

Bounded Cycle Synthesis

  • Bernd Finkbeiner
  • Felix Klein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9779)

Abstract

We introduce a new approach for the synthesis of Mealy machines from specifications in linear-time temporal logic (LTL), where the number of cycles in the state graph of the implementation is limited by a given bound. Bounding the number of cycles leads to implementations that are structurally simpler and easier to understand. We solve the synthesis problem via an extension of SAT-based bounded synthesis, where we additionally construct a witness structure that limits the number of cycles. We also establish a triple-exponential upper and lower bound for the potential blow-up between the length of the LTL formula and the number of cycles in the state graph.

Keywords

State Graph Synthesis Problem Tree Automaton Synthesis Algorithm Blue Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. ACM Trans. Comput. Log. 5(1), 1–25 (2004). http://doi.acm.org/10.1145/963927.963928 MathSciNetCrossRefGoogle Scholar
  2. 2.
    ARM Ltd.: AMBA Specification (rev. 2) (1999). www.arm.com
  3. 3.
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-28756-5_8 CrossRefGoogle Scholar
  4. 4.
    Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009). http://dx.doi.org/10.1007/978-3-642-02658-4_14 CrossRefGoogle Scholar
  5. 5.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). http://dx.doi.org/10.1007/978-3-540-24605-3_37 CrossRefGoogle Scholar
  6. 6.
    Filiot, E., Jin, N., Raskin, J.: Antichains and compositional algorithms for LTL synthesis. Form. Methods Syst. Des. 39(3), 261–296 (2011). http://dx.doi.org/10.1007/s10703-011-0115-3 CrossRefzbMATHGoogle Scholar
  7. 7.
    Filiot, E., Jin, N., Raskin, J.: Exploiting structure in LTL synthesis. STTT 15(5–6), 541–561 (2013). http://dx.doi.org/10.1007/s10009-012-0222-5 CrossRefGoogle Scholar
  8. 8.
    Finkbeiner, B., Klein, F.: Bounded cycle synthesis. CoRR abs/1605.01511 (2016). http://arxiv.org/abs/1605.01511
  9. 9.
    Finkbeiner, B., Schewe, S.: Bounded synthesis. STTT 15(5–6), 519–539 (2013). http://dx.doi.org/10.1007/s10009-012-0228-z CrossRefzbMATHGoogle Scholar
  10. 10.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: a conflict-driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). http://dx.doi.org/10.1007/978-3-540-72200-7_23 CrossRefGoogle Scholar
  11. 11.
    Jacobs, S., Klein, F.: A high-level LTL synthesis format: TLSF v1.1 (Extended Version). CoRR abs/1604.02284 (2016). http://arxiv.org/abs/1604.02284
  12. 12.
    Jobstmann, B.: Applications and optimizations for LTL synthesis. Ph.D. thesis, Graz University of Technology, March 2007Google Scholar
  13. 13.
    Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J. Comput. 4(1), 77–84 (1975). http://dx.doi.org/10.1137/0204007 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-27660-6_8 CrossRefGoogle Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23–25 October 2005, Pittsburgh, PA, USA, Proceedings, pp. 531–542. IEEE Computer Society (2005). http://dx.doi.org/10.1109/SFCS.2005.66
  16. 16.
    Piterman, N.: From nondeterministic Büchi and Streett automata to deterministic parity automata. Log. Methods Comput. Sci. 3(3) (2007). http://dx.doi.org/10.2168/LMCS-3(3:5)2007
  17. 17.
    Tiernan, J.C.: An efficient search algorithm to find the elementary circuits of a graph. Commun. ACM 13(12), 722–726 (1970). http://doi.acm.org/10.1145/362814.362819 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Weinblatt, H.: A new search algorithm for finding the simple cycles of a finite directed graph. J. ACM 19(1), 43–56 (1972). http://doi.acm.org/10.1145/321679.321684 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Reactive Systems GroupSaarland UniversitySaarbrückenGermany

Personalised recommendations