Symbolic Optimal Reachability in Weighted Timed Automata

  • Patricia Bouyer
  • Maximilien Colange
  • Nicolas Markey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9779)

Abstract

Weighted timed automata have been defined in the early 2000 s for modelling resource-consumption or -allocation problems in real-time systems. Optimal reachability is decidable in weighted timed automata, and a symbolic forward algorithm has been developed to solve that problem. This algorithm uses so-called priced zones, an extension of standard zones with cost functions. In order to ensure termination, the algorithm requires clocks to be bounded. For unpriced timed automata, much work has been done to develop sound abstractions adapted to the forward exploration of timed automata, ensuring termination of the model-checking algorithm without bounding the clocks. In this paper, we take advantage of recent developments on abstractions for timed automata, and propose an algorithm allowing for symbolic analysis of all weighted timed automata, without requiring bounded clocks.

References

  1. [ACHH93]
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1993. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  2. [AD90]
    Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  3. [AD94]
    Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. [AFM+03]
    Amnell, T., Fersman, E., Mokrushin, L., Pettersson, P., Yi, W.: TIMES: a tool for schedulability analysis and code generation of real-time systems. In: Larsen, Kim Guldstrand, Niebert, Peter (eds.) FORMATS 2003. LNCS, vol. 2791, pp. 60–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. [ALP01]
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. [ARF14]
    Al-Bataineh, O., Reynolds, M., French, T.: Finding best and worst case execution times of systems using difference-bound matrices. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 38–52. Springer, Heidelberg (2014)Google Scholar
  7. [BBBR07]
    Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability problem. Form. Methods Syst. Des. 31(2), 135–175 (2007)CrossRefMATHGoogle Scholar
  8. [BBFL03]
    Behrmann, G., Bouyer, P., Fleury, E., Larsen, K.G.: Static guard analysis in timed automata verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 254–270. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. [BBL08]
    Patricia, B., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced timed automata. Form. Methods Syst. Des. 32(1), 2–23 (2008)MATHGoogle Scholar
  10. [BBLP06]
    Behrmann, G., Bouyer, P., Larsen, K.G., Pelànek, R.: Zone based abstractions for timed automata exploiting lower and upper bounds. Int. J. Softw. Tools Technol. Transf. 8(3), 204–215 (2006)CrossRefMATHGoogle Scholar
  11. [BCM16]
    Bouyer, P., Colange, M., Markey, N.: Symbolic optimal reachability in weighted timed automata. Technical report abs/1602.00481, CoRR (2016). http://arxiv.org/abs/1602.00481
  12. [BFH+01]
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J.M.T., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. [BFLM11]
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Quantitative analysis of real-time systems using priced timed automata. Commun. ACM 54(9), 78–87 (2011)CrossRefGoogle Scholar
  14. [BLR05]
    Behrmann, G., Larsen, K.G., Rasmussen, J.I.: Optimal scheduling using priced timed automata. ACM Sigmetrics Perform. Eval. Rev. 32(4), 34–40 (2005)CrossRefGoogle Scholar
  15. [Bou04]
    Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods Syst. Des. 24(3), 281–320 (2004)MathSciNetCrossRefMATHGoogle Scholar
  16. [BV04]
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  17. [BY03]
    Bengtsson, J.E., Yi, W.: On clock difference constraints and termination in reachability analysis of timed automata. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885, pp. 491–503. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. [DHS+14]
    Deshpande, A., Herbreteau, F., Srivathsan, B., Tran, T.-T., Walukiewicz, I.: Fast detection of cycles in timed automata. Technical report abs/1410.4509, CoRR (2014). http://arxiv.org/abs/1410.4509
  19. [DOT+10]
    Dalsgaard, A.E., Chr, M., Olesen, M.T., Hansen, R.R., Larsen, K.G.: METAMOC: modular execution time analysis using model checking. In: Proceedings of 10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010). OpenAccess Series in Informatics (OASIcs), vol. 15, pp. 113–123. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  20. [GELP10]
    Gustavsson, A., Ermedahl, A., Lisper, B., Pettersson, P.: Towards WCET analysis of multicore architectures using UPPAAL. In: Proceedings of 10th International Workshop on Worst-Case Execution Time Analysis (WCET 2010). OpenAccess Series in Informatics (OASIcs), vol. 15, pp. 101–112. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)Google Scholar
  21. [HKPV98]
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)MathSciNetCrossRefMATHGoogle Scholar
  22. [HKSW11]
    Herbreteau, F., Kini, D., Srivathsan, B., Walukiewicz, I.: Using non-convex approximations for efficient analysis of timed automata. In: Proceedings of 30th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). LIPIcs, vol. 13, pp. 78–89. Leibniz-Zentrum für Informatik (2011)Google Scholar
  23. [HSW12]
    Frédéric Herbreteau, B., Srivathsan, I.W.: Better abstractions for timed automata. In: Proceedings of 27th Annual Symposium on Logic in Computer Science (LICS 2012), pp. 375–384. IEEE Computer Society Press (2012)Google Scholar
  24. [HT15]
    Herbreteau, F., Tran, T.-T.: Improving search order for reachability testing in timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 124–139. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  25. [JR11]
    Jaubert, R., Reynier, P.-A.: Quantitative robustness analysis of flat timed automata. In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 229–244. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. [LBB+01]
    Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn, J.M.T.: As cheap as possible: efficient cost-optimal reachability for priced timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 493–505. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. [RLS06]
    Rasmussen, J.I., Larsen, K.G., Subramani, K.: On using priced timed automata to achieve optimal scheduling. Form. Methods Syst. Des. 29(1), 97–114 (2006)CrossRefMATHGoogle Scholar
  28. [RS01]
    Rückmann, J.-J., Stein, O.: On linear and linearized generalized semi-infinite optimization problem. Ann. Oper. Res. 101(1–4), 191–208 (2001)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Patricia Bouyer
    • 1
  • Maximilien Colange
    • 1
  • Nicolas Markey
    • 1
  1. 1.LSV – CNRS, ENS Cachan, Université Paris SaclayCachanFrance

Personalised recommendations