Advertisement

Parsimonious, Simulation Based Verification of Linear Systems

  • Parasara Sridhar DuggiralaEmail author
  • Mahesh Viswanathan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9779)

Abstract

We present a technique to verify safety properties of linear systems (possibly time varying) using very few simulations. For a linear system of dimension n, our technique needs \(n+1\) simulation runs. This is in contrast to current simulation based approaches, where the number of simulations either depends upon the number of vertices in the convex polyhedral initial set, or on the proximity of the unsafe set to the set of reachable states. At its core, our algorithm exploits the superposition principle of linear systems. Our algorithm computes both an over and an under approximation of the set of reachable states.

Keywords

Hybrid System Superposition Principle Reachable State Discrete Transition Linear Time Invariant System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Computer assisted proofs in dynamic groups (capd). http://capd.ii.uj.edu.pl/index.php
  2. 2.
    Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization and non-convex sets. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, pp. 173–182. ACM (2013)Google Scholar
  3. 3.
    Althoff, M., Le Guernic, C., Krogh, B.H.: Reachable set computation for uncertain time-varying linear systems. In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, pp. 93–102. ACM (2011)Google Scholar
  4. 4.
    Bouissou, O., Martel, M.: Grklib: a guaranteed runge kutta library. In: 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, SCAN 2006, p. 8. IEEE (2006)Google Scholar
  5. 5.
    Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: RTSS (2012)Google Scholar
  6. 6.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. IEEE Trans. Autom. Control 48, 64–75 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from executions. In: Proceedings of the 13th International Conference on Embedded Software (EMSOFT 2013), Montreal, Canada (2013)Google Scholar
  11. 11.
    Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015)Google Scholar
  12. 12.
    Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test generation and coverage for hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 329–342. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Kong, S., Gao, S., Chen, W., Clarke, E.: \(\sf dReach\): \(\delta \)-reachability analysis for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–205. Springer, Heidelberg (2015)Google Scholar
  17. 17.
    Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis: internal approximation. Syst. Control Lett. 41(3), 201–211 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 540–554. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Makhlouf, I.B., Kowalewski, S.: Networked cooperative platoon of vehicles for testing methods and verification tools. In: Applied Verification for Continuous and Hybrid Systems. CPS-VO (2014)Google Scholar
  20. 20.
    Mitra, S., Archer, M.: PVS strategies for proving abstraction properties of automata. Electron. Notes Theor. Comput. Sci. 125(2), 45–65 (2005)CrossRefzbMATHGoogle Scholar
  21. 21.
    Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow computations. In: Proceedings of the 14th International Conference on Hybrid Systems: Computation and Control, pp. 133–142. ACM (2011)Google Scholar
  23. 23.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, 15–17 December 2009, pp. 383–394. IIT Kanpur, India (2009)Google Scholar
  25. 25.
    Tiwari, A.: Approximate reachability for linear systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 514–525. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Tiwari, A.: HybridSAL relational abstracter. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 725–731. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Parasara Sridhar Duggirala
    • 1
    Email author
  • Mahesh Viswanathan
    • 2
  1. 1.University of ConnecticutMansfieldUSA
  2. 2.University of Illinois, Urbana-ChampaignChampaignUSA

Personalised recommendations