Markov Chains and Unambiguous Büchi Automata

  • Christel Baier
  • Stefan Kiefer
  • Joachim Klein
  • Sascha Klüppelholz
  • David MüllerEmail author
  • James Worrell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9779)


Unambiguous automata, i.e., nondeterministic automata with the restriction of having at most one accepting run over a word, have the potential to be used instead of deterministic automata in settings where nondeterministic automata can not be applied in general. In this paper, we provide a polynomially time-bounded algorithm for probabilistic model checking of discrete-time Markov chains against unambiguous Büchi automata specifications and report on our implementation and experiments.


Markov Chain Model Check Linear Temporal Logic Linear Equation System Strongly Connect Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Théodore Lopez for his comments on a draft of this paper.


  1. 1.
    Website with additional material for this paper.
  2. 2.
    Arnold, A.: Deterministic and non ambiguous rational omega-languages. In: Nivat, M., Perrin, D. (eds.) Automata on Infinite Words, Ecole de Printemps d’Informatique Théorique, Le Mont Dore. LNCS, vol. 192, pp. 18–27. Springer, Heidelberg (1985)Google Scholar
  3. 3.
    Babiak, T., Blahoudek, F., Duret-Lutz, A., Klein, J., Křetínský, J., Müller, D., Parker, D., Strejček, J.: The Hanoi omega-automata format. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 479–486. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  4. 4.
    Baier, C., Kiefer, S., Klein, J., Klüppelholz, S., Müller, D., Worrell, J.: Markov chains and unambiguous Büchi automata (extended version) (2016). Google Scholar
  5. 5.
    Benedikt, M., Lenhardt, R., Worrell, J.: LTL model checking of interval Markov chains. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013 (ETAPS 2013). LNCS, vol. 7795, pp. 32–46. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Benedikt, M., Lenhardt, R., Worrell, J.: Model checking Markov chains against unambiguous Büchi automata (2014). arXiv:1405.4560
  7. 7.
    Benedikt, M., Lenhardt, R., Worrell, J.: Two variable vs. linear temporal logic in model checking and games. Log. Methods Comput. Sci. 9(2), 1–37 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, Cambridge (1979)zbMATHGoogle Scholar
  9. 9.
    Bousquet, N., Löding, C.: Equivalence and inclusion problem for strongly unambiguous Büchi automata. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 118–129. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Bustan, D., Rubin, S., Vardi, M.Y.: Verifying \(\mathit{\omega }\)-regular properties of Markov Chains. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 189–201. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Chakraborty, S., Katoen, J.-P.: Parametric LTL on Markov chains. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 207–221. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Colcombet, T.: Forms of determinism for automata (invited talk). In: 29th International Symposium on Theoretical Aspects of Computer Science, (STACS), LIPIcs, vol. 14, pp. 1–23. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  13. 13.
    Colcombet, T.: Unambiguity in automata theory. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 3–18. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  14. 14.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M., Woodcock, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Couvreur, J.-M., Saheb, N., Sutre, G.: An optimal automata approach to LTL model checking of probabilistic systems. In: Vardi, M.Y., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 361–375. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Duret-Lutz, A.: Manipulating LTL formulas using spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Duret-Lutz, A.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput.-Based Syst. 5(1/2), 31–54 (2014)CrossRefGoogle Scholar
  19. 19.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: 21th International Conference on Software Engineering (ICSE), pp. 411–420. ACM (1999)Google Scholar
  20. 20.
    Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 153–168. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: Fifteenth IFIP WG6.1 International Symposium on Protocol Specification (PSTV), IFIP Conference Proceedings, vol. 38, pp. 3–18. Chapman & Hall (1995)Google Scholar
  22. 22.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  23. 23.
    Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  24. 24.
    Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  25. 25.
    Hoschek, W.: The colt distribution: open source libraries for high performance scientific and technical computing in Java (2004)Google Scholar
  26. 26.
    Isaak, D., Löding, C.: Efficient inclusion testing for simple classes of unambiguous \(\omega \)-automata. Inf. Process. Lett. 112(14–15), 578–582 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kähler, D., Wilke, T.: Complementation, disambiguation, and determinization of Büchi automata unified. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 724–735. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Klein, J., Baier, C.: Experiments with deterministic \(\omega \)-automata for formulas of linear temporal logic. Theoret. Comput. Sci. 363(2), 182–195 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall, London (1995)zbMATHGoogle Scholar
  30. 30.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Kwiatkowska, M.Z., Norman, G., Parker, D.: The PRISM benchmark suite. In: 9th International Conference on Quantitative Evaluation of SysTems (QEST), pp. 203–204. IEEE Computer Society (2012)Google Scholar
  32. 32.
    Lenhardt, R.: Tulip: model checking probabilistic systems using expectation maximisation algorithm. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 155–159. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  33. 33.
    Lenhardt, R.: Two variable and linear temporal logic in model checking and games. Ph.D. thesis, University of Oxford (2013)Google Scholar
  34. 34.
    Morgenstern, A.: Symbolic controller synthesis for LTL specifications. Ph.D. thesis, Technische Universität Kaiserslautern (2010)Google Scholar
  35. 35.
    The PRISM model checker.
  36. 36.
    Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Emerson, E.A., Sistla, A.P. (eds.) Computer Aided Verification. LNCS, vol. 1855, pp. 248–263. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Stearns, R.E., Hunt, H.B.: On the equivalence and containment problem for unambiguous regular expressions, grammars, and automata. SIAM J. Comput. 14(3), 598–611 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: 26th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 327–338. IEEE Computer Society (1985)Google Scholar
  39. 39.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: 1st Symposium on Logic in Computer Science (LICS), pp. 332–344. IEEE Computer Society Press (1986)Google Scholar
  40. 40.
    Wolper, P., Vardi, M.Y., Sistla, P.A.: Reasoning about infinite computation paths (extended abstract). In: 24th Annual Symposium on Foundations of Computer Science (FOCS), pp. 185–194. IEEE Computer Society (1983)Google Scholar
  41. 41.
    Zimmermann, M.: Optimal bounds in parametric LTL games. Theoret. Comput. Sci. 493, 30–45 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christel Baier
    • 1
  • Stefan Kiefer
    • 2
  • Joachim Klein
    • 1
  • Sascha Klüppelholz
    • 1
  • David Müller
    • 1
    Email author
  • James Worrell
    • 2
  1. 1.Technische Universität DresdenDresdenGermany
  2. 2.University of OxfordOxfordUnited Kingdom

Personalised recommendations