The Relevance of Genomic Signatures at Adhesion GPCR Loci in Humans

  • Peter KovacsEmail author
  • Torsten SchönebergEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 234)

Graphical Abstract


Adhesion G protein-coupled receptors (aGPCRs) have a long evolutionary history dating back to very basal unicellular eukaryotes. Almost every vertebrate is equipped with a set of different aGPCRs. Genomic sequence data of several hundred extinct and extant species allows for reconstruction of aGPCR phylogeny in vertebrates and non-vertebrates in general but also provides a detailed view into the recent evolutionary history of human aGPCRs. Mining these sequence sources with bioinformatic tools can unveil many facets of formerly unappreciated aGPCR functions. In this review, we extracted such information from the literature and open public sources and provide insights into the history of aGPCR in humans. This includes comprehensive analyses of signatures of selection, variability of human aGPCR genes, and quantitative traits at human aGPCR loci. As indicated by a large number of genome-wide genotype-phenotype association studies, variations in aGPCR contribute to specific human phenotypes. Our survey demonstrates that aGPCRs are significantly involved in adaptation processes, phenotype variations, and diseases in humans.


Adhesion G protein-coupled receptors Population genetics Natural selection Genome-wide association studies Mutation Disease 



P.K. is supported by the Federal Ministry of Education and Research (BMBF), Germany, FKZ, 01EO1501 (AD2-060E), and by the German Research Foundation (CRC 1052; B03). T.S. is supported by the German Research Foundation (FOR 2149, P4, P5).


  1. 1.
    Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM et al (2015) A global reference for human genetic variation. Nature 526(7571):68–74. doi: 10.1038/nature15393 CrossRefGoogle Scholar
  2. 2.
    Genome KCoS (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 100(6):659–674. doi: 10.1093/jhered/esp086, PubMed PMID: 19892720; PubMed Central PMCID: PMCPMC2877544CrossRefGoogle Scholar
  3. 3.
    Koepfli KP, Paten B, Genome KCoS, O’Brien SJ (2015) The Genome 10K Project: a way forward. Annu Rev Anim Biosci 3:57–111. doi: 10.1146/annurev-animal-090414-014900 PubMedCrossRefGoogle Scholar
  4. 4.
    Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(6215):1320–1331. doi: 10.1126/science.1253451, PubMed PMID: 25504713; PubMed Central PMCID: PMCPMC4405904PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Pickrell JK, Reich D (2014) Toward a new history and geography of human genes informed by ancient DNA. Trends Genet 30(9):377–389. doi: 10.1016/j.tig.2014.07.007, PubMed PMID: 25168683; PubMed Central PMCID: PMCPMC4163019PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Le Duc D, Renaud G, Krishnan A, Almen MS, Huynen L, Prohaska SJ et al (2015) Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome Biol 16:147. doi: 10.1186/s13059-015-0711-4, PubMed PMID: 26201466; PubMed Central PMCID: PMCPMC4511969PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    de Mendoza A, Sebe-Pedros A, Ruiz-Trillo I (2014) The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol Evol 6(3):606–619. doi: 10.1093/gbe/evu038, PubMed PMID: 24567306; PubMed Central PMCID: PMCPMC3971589PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Krishnan A, Almen MS, Fredriksson R, Schioth HB (2012) The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One 7(1), e29817. doi: 10.1371/journal.pone.0029817, PubMed PMID: 22238661; PubMed Central PMCID: PMCPMC3251606PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Krishnan A, Schioth HB (2015) The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system. J Exp Biol 218(Pt 4):562–571. doi: 10.1242/jeb.110312 PubMedCrossRefGoogle Scholar
  10. 10.
    Nordstrom KJ, Lagerstrom MC, Waller LM, Fredriksson R, Schioth HB (2009) The Secretin GPCRs descended from the family of Adhesion GPCRs. Mol Biol Evol 26(1):71–84PubMedCrossRefGoogle Scholar
  11. 11.
    Schioth HB, Nordstrom KJ, Fredriksson R (2010) The adhesion GPCRs; gene repertoire, phylogeny and evolution. Adv Exp Med Biol 706:1–13PubMedCrossRefGoogle Scholar
  12. 12.
    Hamann J, Kwakkenbos MJ, de Jong EC, Heus H, Olsen AS, van Lier RA (2003) Inactivation of the EGF-TM7 receptor EMR4 after the Pan-Homo divergence. Eur J Immunol 33(5):1365–1371. doi: 10.1002/eji.200323881 PubMedCrossRefGoogle Scholar
  13. 13.
    Promel S, Waller-Evans H, Dixon J, Zahn D, Colledge WH, Doran J et al (2012) Characterization and functional study of a cluster of four highly conserved orphan adhesion-GPCR in mouse. Dev Dyn 241(10):1591–1602. doi: 10.1002/dvdy.23841, Epub 2012/07/28PubMedCrossRefGoogle Scholar
  14. 14.
    Lachance J, Tishkoff SA (2013) Population genomics of human adaptation. Annu Rev Ecol Evol Syst 44:123–143. doi: 10.1146/annurev-ecolsys-110512-135833, PubMed PMID: 25383060; PubMed Central PMCID: PMCPMC4221232PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF, Drake JA et al (2004) Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet 74(6):1111–1120. doi: 10.1086/421051, PubMed PMID: 15114531; PubMed Central PMCID: PMCPMC1182075PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Vitti JJ, Grossman SR, Sabeti PC (2013) Detecting natural selection in genomic data. Annu Rev Genet 47:97–120. doi: 10.1146/annurev-genet-111212-133526 PubMedCrossRefGoogle Scholar
  17. 17.
    Scheinfeldt LB, Tishkoff SA (2013) Recent human adaptation: genomic approaches, interpretation and insights. Nat Rev Genet 14(10):692–702. doi: 10.1038/nrg3604 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13(5):555–556PubMedGoogle Scholar
  19. 19.
    Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591PubMedCrossRefGoogle Scholar
  20. 20.
    McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351(6328):652–654. doi: 10.1038/351652a0 PubMedCrossRefGoogle Scholar
  21. 21.
    Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3):585–595PubMedPubMedCentralGoogle Scholar
  22. 22.
    Akey JM, Zhang G, Zhang K, Jin L, Shriver MD (2002) Interrogating a high-density SNP map for signatures of natural selection. Genome Res 12(12):1805–1814. doi: 10.1101/gr.631202, PubMed PMID: 12466284; PubMed Central PMCID: PMCPMC187574PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O et al (2006) Positive natural selection in the human lineage. Science 312(5780):1614–1620PubMedCrossRefGoogle Scholar
  24. 24.
    Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF et al (2002) Detecting recent positive selection in the human genome from haplotype structure. Nature 419(6909):832–837. doi: 10.1038/nature01140 PubMedCrossRefGoogle Scholar
  25. 25.
    Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4(3), e72PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Tang K, Thornton KR, Stoneking M (2007) A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol 5(7), e171PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164):913–918PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E et al (2013) Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502(7470):228–231. doi: 10.1038/nature12511, PubMed PMID: 24005325; PubMed Central PMCID: PMCPMC3836225PubMedCrossRefGoogle Scholar
  29. 29.
    Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S et al (2005) Natural selection on protein-coding genes in the human genome. Nature 437(7062):1153–1157PubMedCrossRefGoogle Scholar
  30. 30.
    Gaya-Vidal M, Alba MM (2014) Uncovering adaptive evolution in the human lineage. BMC Genomics 15:599. doi: 10.1186/1471-2164-15-599, PubMed PMID: 25030307; PubMed Central PMCID: PMCPMC4124166PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kosiol C, Vinar T, da Fonseca RR, Hubisz MJ, Bustamante CD, Nielsen R et al (2008) Patterns of positive selection in six Mammalian genomes. PLoS Genet 4(8), e1000144. doi: 10.1371/journal.pgen.1000144, PubMed PMID: 18670650; PubMed Central PMCID: PMCPMC2483296PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bakewell MA, Shi P, Zhang J (2007) More genes underwent positive selection in chimpanzee evolution than in human evolution. Proc Natl Acad Sci U S A 104(18):7489–7494. doi: 10.1073/pnas.0701705104, PubMed PMID: 17449636; PubMed Central PMCID: PMCPMC1863478PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Liu X, Somel M, Tang L, Yan Z, Jiang X, Guo S et al (2012) Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques. Genome Res 22(4):611–622. doi: 10.1101/gr.127324.111, PubMed PMID: 22300767; PubMed Central PMCID: PMCPMC3317144PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rompler H, Dear PH, Krause J, Meyer M, Rohland N, Schoneberg T et al (2006) Multiplex amplification of ancient DNA. Nat Protoc 1(2):720–728PubMedCrossRefGoogle Scholar
  35. 35.
    Miller W, Drautz DI, Ratan A, Pusey B, Qi J, Lesk AM et al (2008) Sequencing the nuclear genome of the extinct woolly mammoth. Nature 456(7220):387–390PubMedCrossRefGoogle Scholar
  36. 36.
    Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB et al (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317(5834):111–114PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lalueza-Fox C, Rompler H, Caramelli D, Staubert C, Catalano G, Hughes D et al (2007) A melanocortin 1 receptor allele suggests varying pigmentation among Neanderthals. Science 318(5855):1453–1455PubMedCrossRefGoogle Scholar
  38. 38.
    Rompler H, Rohland N, Lalueza-Fox C, Willerslev E, Kuznetsova T, Rabeder G et al (2006) Nuclear gene indicates coat-color polymorphism in mammoths. Science 313(5783):62PubMedCrossRefGoogle Scholar
  39. 39.
    Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M et al (2010) A draft sequence of the Neandertal genome. Science 328(5979):710–722. doi: 10.1126/science.1188021 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Prufer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S et al (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505(7481):43–49. doi: 10.1038/nature12886, PubMed PMID: 24352235; PubMed Central PMCID: PMCPMC4031459PubMedCrossRefGoogle Scholar
  41. 41.
    Khrameeva EE, Bozek K, He L, Yan Z, Jiang X, Wei Y et al (2014) Neanderthal ancestry drives evolution of lipid catabolism in contemporary Europeans. Nat Commun 5:3584. doi: 10.1038/ncomms4584, PubMed PMID: 24690587; PubMed Central PMCID: PMCPMC3988804PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Castellano S, Parra G, Sanchez-Quinto FA, Racimo F, Kuhlwilm M, Kircher M et al (2014) Patterns of coding variation in the complete exomes of three Neandertals. Proc Natl Acad Sci U S A 111(18):6666–6671. doi: 10.1073/pnas.1405138111, PubMed PMID: 24753607; PubMed Central PMCID: PMCPMC4020111PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S et al (2012) A high-coverage genome sequence from an archaic Denisovan individual. Science 338(6104):222–226. doi: 10.1126/science.1224344, PubMed PMID: 22936568; PubMed Central PMCID: PMCPMC3617501PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Burbano HA, Hodges E, Green RE, Briggs AW, Krause J, Meyer M et al (2010) Targeted investigation of the Neandertal genome by array-based sequence capture. Science 328(5979):723–725. doi: 10.1126/science.1188046, PubMed PMID: 20448179; PubMed Central PMCID: PMCPMC3140021PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Xing J, Wuren T, Simonson TS, Watkins WS, Witherspoon DJ, Wu W et al (2013) Genomic analysis of natural selection and phenotypic variation in high-altitude mongolians. PLoS Genet 9(7), e1003634. doi: 10.1371/journal.pgen.1003634, PubMed PMID: 23874230; PubMed Central PMCID: PMCPMC3715426PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, Krumm N, Huddleston J et al (2015) Global diversity, population stratification, and selection of human copy-number variation. Science 349(6253):aab3761. doi: 10.1126/science.aab3761, PubMed PMID: 26249230; PubMed Central PMCID: PMCPMC4568308PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Oleksyk TK, Zhao K, De La Vega FM, Gilbert DA, O’Brien SJ, Smith MW (2008) Identifying selected regions from heterozygosity and divergence using a light-coverage genomic dataset from two human populations. PLoS One 3(3), e1712. doi: 10.1371/journal.pone.0001712, PubMed PMID: 18320033; PubMed Central PMCID: PMCPMC2248624PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Cardona A, Pagani L, Antao T, Lawson DJ, Eichstaedt CA, Yngvadottir B et al (2014) Genome-wide analysis of cold adaptation in indigenous Siberian populations. PLoS One 9(5), e98076. doi: 10.1371/journal.pone.0098076, PubMed PMID: 24847810; PubMed Central PMCID: PMCPMC4029955PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kimura R, Fujimoto A, Tokunaga K, Ohashi J (2007) A practical genome scan for population-specific strong selective sweeps that have reached fixation. PLoS One 2(3), e286. doi: 10.1371/journal.pone.0000286, PubMed PMID: 17356696; PubMed Central PMCID: PMCPMC1805687PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D et al (2009) Signals of recent positive selection in a worldwide sample of human populations. Genome Res 19(5):826–837. doi: 10.1101/gr.087577.108, PubMed PMID: 19307593; PubMed Central PMCID: PMCPMC2675971PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Genomes Project C, Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073. doi: 10.1038/nature09534, PubMed PMID: 20981092; PubMed Central PMCID: PMCPMC3042601CrossRefGoogle Scholar
  52. 52.
    Mizuno H, Atwal G, Wang H, Levine AJ, Vazquez A (2010) Fine-scale detection of population-specific linkage disequilibrium using haplotype entropy in the human genome. BMC Genet 11:27. doi: 10.1186/1471-2156-11-27, PubMed PMID: 20416085; PubMed Central PMCID: PMCPMC2873552PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    International HapMap C, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861. doi: 10.1038/nature06258, PubMed PMID: 17943122; PubMed Central PMCID: PMCPMC2689609CrossRefGoogle Scholar
  54. 54.
    Huerta-Sanchez E, Degiorgio M, Pagani L, Tarekegn A, Ekong R, Antao T et al (2013) Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations. Mol Biol Evol 30(8):1877–1888. doi: 10.1093/molbev/mst089, PubMed PMID: 23666210; PubMed Central PMCID: PMCPMC3708501PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Andres AM, Hubisz MJ, Indap A, Torgerson DG, Degenhardt JD, Boyko AR et al (2009) Targets of balancing selection in the human genome. Mol Biol Evol 26(12):2755–2764. doi: 10.1093/molbev/msp190, PubMed PMID: 19713326; PubMed Central PMCID: PMCPMC2782326PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Lopez Herraez D, Bauchet M, Tang K, Theunert C, Pugach I, Li J et al (2009) Genetic variation and recent positive selection in worldwide human populations: evidence from nearly 1 million SNPs. PLoS One 4(11), e7888. doi: 10.1371/journal.pone.0007888, PubMed PMID: 19924308; PubMed Central PMCID: PMCPMC2775638PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151PubMedCrossRefGoogle Scholar
  58. 58.
    Jiang P, Josue J, Li X, Glaser D, Li W, Brand JG et al (2012) Major taste loss in carnivorous mammals. Proc Natl Acad Sci U S A 109(13):4956–4961. doi: 10.1073/pnas.1118360109, PubMed PMID: 22411809, PubMed Central PMCID: PMC3324019, Epub 2012/03/141118360109 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Rompler H, Schulz A, Pitra C, Coop G, Przeworski M, Paabo S et al (2005) The rise and fall of the chemoattractant receptor GPR33. J Biol Chem 280(35):31068–31075PubMedCrossRefGoogle Scholar
  60. 60.
    Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725PubMedCrossRefGoogle Scholar
  61. 61.
    Hofreiter M, Schoneberg T (2010) The genetic and evolutionary basis of colour variation in vertebrates. Cell Mol Life Sci 67(15):2591–2603. doi: 10.1007/s00018-010-0333-7 PubMedCrossRefGoogle Scholar
  62. 62.
    Schaller E, Macfarlane AJ, Rupec RA, Gordon S, McKnight AJ, Pfeffer K (2002) Inactivation of the F4/80 glycoprotein in the mouse germ line. Mol Cell Biol 22(22):8035–8043, PubMed PMID: 12391169; PubMed Central PMCID: PMCPMC134735PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A et al (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922):1073–1080PubMedCrossRefGoogle Scholar
  64. 64.
    MacDonald ME, Novelletto A, Lin C, Tagle D, Barnes G, Bates G et al (1992) The Huntington’s disease candidate region exhibits many different haplotypes. Nat Genet 1(2):99–103. doi: 10.1038/ng0592-99 PubMedCrossRefGoogle Scholar
  65. 65.
    Carlson CS, Eberle MA, Kruglyak L, Nickerson DA (2004) Mapping complex disease loci in whole-genome association studies. Nature 429(6990):446–452. doi: 10.1038/nature02623 PubMedCrossRefGoogle Scholar
  66. 66.
    Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341. doi: 10.1126/science.1142364, PubMed PMID: 17463249; PubMed Central PMCID: PMCPMC3772310PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316(5826):889–894PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Demissie S, Cupples LA, Myers R, Aliabadi P, Levy D, Felson DT (2002) Genome scan for quantity of hand osteoarthritis: the Framingham Study. Arthritis Rheum 46(4):946–952PubMedCrossRefGoogle Scholar
  69. 69.
    Freedman BI, Beck SR, Rich SS, Heiss G, Lewis CE, Turner S et al (2003) A genome-wide scan for urinary albumin excretion in hypertensive families. Hypertension 42(3):291–296. doi: 10.1161/01.HYP.0000087890.33245.41 PubMedCrossRefGoogle Scholar
  70. 70.
    Palmer LJ, Celedon JC, Chapman HA, Speizer FE, Weiss ST, Silverman EK (2003) Genome-wide linkage analysis of bronchodilator responsiveness and post-bronchodilator spirometric phenotypes in chronic obstructive pulmonary disease. Hum Mol Genet 12(10):1199–1210PubMedCrossRefGoogle Scholar
  71. 71.
    Spira A, Beane J, Pinto-Plata V, Kadar A, Liu G, Shah V et al (2004) Gene expression profiling of human lung tissue from smokers with severe emphysema. Am J Respir Cell Mol Biol 31(6):601–610. doi: 10.1165/rcmb.2004-0273OC PubMedCrossRefGoogle Scholar
  72. 72.
    Meyre D, Lecoeur C, Delplanque J, Francke S, Vatin V, Durand E et al (2004) A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31-q23.2. Diabetes 53(3):803–811PubMedCrossRefGoogle Scholar
  73. 73.
    Pollin TI, Hsueh WC, Steinle NI, Snitker S, Shuldiner AR, Mitchell BD (2004) A genome-wide scan of serum lipid levels in the Old Order Amish. Atherosclerosis 173(1):89–96. doi: 10.1016/j.atherosclerosis.2003.11.012 PubMedCrossRefGoogle Scholar
  74. 74.
    Aulchenko YS, Vaessen N, Heutink P, Pullen J, Snijders PJ, Hofman A et al (2003) A genome-wide search for genes involved in type 2 diabetes in a recently genetically isolated population from the Netherlands. Diabetes 52(12):3001–3004PubMedCrossRefGoogle Scholar
  75. 75.
    Smith P, McGuffog L, Easton DF, Mann GJ, Pupo GM, Newman B et al (2006) A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45(7):646–655. doi: 10.1002/gcc.20330, PubMed PMID: 16575876; PubMed Central PMCID: PMCPMC2714969PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Maier C, Herkommer K, Hoegel J, Vogel W, Paiss T (2005) A genomewide linkage analysis for prostate cancer susceptibility genes in families from Germany. Eur J Hum Genet 13(3):352–360. doi: 10.1038/sj.ejhg.5201333 PubMedCrossRefGoogle Scholar
  77. 77.
    Hsieh CL, Oakley-Girvan I, Balise RR, Halpern J, Gallagher RP, Wu AH et al (2001) A genome screen of families with multiple cases of prostate cancer: evidence of genetic heterogeneity. Am J Hum Genet 69(1):148–158. doi: 10.1086/321281, PubMed PMID: 11404817; PubMed Central PMCID: PMCPMC1226029PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Schleutker J, Baffoe-Bonnie AB, Gillanders E, Kainu T, Jones MP, Freas-Lutz D et al (2003) Genome-wide scan for linkage in finnish hereditary prostate cancer (HPC) families identifies novel susceptibility loci at 11q14 and 3p25-26. Prostate 57(4):280–289. doi: 10.1002/pros.10302 PubMedCrossRefGoogle Scholar
  79. 79.
    Eraksoy M, Kurtuncu M, Akman-Demir G, Kilinc M, Gedizlioglu M, Mirza M et al (2003) A whole genome screen for linkage in Turkish multiple sclerosis. J Neuroimmunol 143(1–2):17–24PubMedCrossRefGoogle Scholar
  80. 80.
    Imperatore G, Knowler WC, Pettitt DJ, Kobes S, Fuller JH, Bennett PH et al (2000) A locus influencing total serum cholesterol on chromosome 19p: results from an autosomal genomic scan of serum lipid concentrations in Pima Indians. Arterioscler Thromb Vasc Biol 20(12):2651–2656PubMedCrossRefGoogle Scholar
  81. 81.
    Elbein SC, Hasstedt SJ (2002) Quantitative trait linkage analysis of lipid-related traits in familial type 2 diabetes: evidence for linkage of triglyceride levels to chromosome 19q. Diabetes 51(2):528–535PubMedCrossRefGoogle Scholar
  82. 82.
    Shmulewitz D, Heath SC, Blundell ML, Han Z, Sharma R, Salit J et al (2006) Linkage analysis of quantitative traits for obesity, diabetes, hypertension, and dyslipidemia on the island of Kosrae, Federated States of Micronesia. Proc Natl Acad Sci U S A 103(10):3502–3509. doi: 10.1073/pnas.0510156103, PubMed PMID: 16537441; PubMed Central PMCID: PMCPMC1533774PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Arya R, Demerath E, Jenkinson CP, Goring HH, Puppala S, Farook V et al (2006) A quantitative trait locus (QTL) on chromosome 6q influences birth weight in two independent family studies. Hum Mol Genet 15(10):1569–1579. doi: 10.1093/hmg/ddl076 PubMedCrossRefGoogle Scholar
  84. 84.
    Norman RA, Thompson DB, Foroud T, Garvey WT, Bennett PH, Bogardus C et al (1997) Genomewide search for genes influencing percent body fat in Pima Indians: suggestive linkage at chromosome 11q21-q22. Pima Diabetes Gene Group. Am J Hum Genet 60(1):166–173, PubMed PMID: 8981960; PubMed Central PMCID: PMCPMC1712570PubMedPubMedCentralGoogle Scholar
  85. 85.
    Wiklund F, Gillanders EM, Albertus JA, Bergh A, Damber JE, Emanuelsson M et al (2003) Genome-wide scan of Swedish families with hereditary prostate cancer: suggestive evidence of linkage at 5q11.2 and 19p13.3. Prostate 57(4):290–297. doi: 10.1002/pros.10303 PubMedCrossRefGoogle Scholar
  86. 86.
    Vionnet N, Hani EH, Dupont S, Gallina S, Francke S, Dotte S et al (2000) Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. Am J Hum Genet 67(6):1470–1480. doi: 10.1086/316887, PubMed PMID: 11067779; PubMed Central PMCID: PMCPMC1287924PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Silverman EK, Palmer LJ, Mosley JD, Barth M, Senter JM, Brown A et al (2002) Genomewide linkage analysis of quantitative spirometric phenotypes in severe early-onset chronic obstructive pulmonary disease. Am J Hum Genet 70(5):1229–1239. doi: 10.1086/340316, PubMed PMID: 11914989; PubMed Central PMCID: PMCPMC447597PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Colilla S, Nicolae D, Pluzhnikov A, Blumenthal MN, Beaty TH, Bleecker ER et al (2003) Evidence for gene-environment interactions in a linkage study of asthma and smoking exposure. J Allergy Clin Immunol 111(4):840–846PubMedCrossRefGoogle Scholar
  89. 89.
    van der Kallen CJ, Cantor RM, van Greevenbroek MM, Geurts JM, Bouwman FG, Aouizerat BE et al (2000) Genome scan for adiposity in Dutch dyslipidemic families reveals novel quantitative trait loci for leptin, body mass index and soluble tumor necrosis factor receptor superfamily 1A. Int J Obes Relat Metab Disord 24(11):1381–1391PubMedCrossRefGoogle Scholar
  90. 90.
    Cantor RM, de Bruin T, Kono N, Napier S, van Nas A, Allayee H et al (2004) Quantitative trait loci for apolipoprotein B, cholesterol, and triglycerides in familial combined hyperlipidemia pedigrees. Arterioscler Thromb Vasc Biol 24(10):1935–1941. doi: 10.1161/01.ATV.0000142358.46276.a7 PubMedCrossRefGoogle Scholar
  91. 91.
    Ge D, Huang J, Yang W, Zhao J, Shen Y, Qiang B et al (2005) Linkage analysis of chromosome 1 with essential hypertension and blood pressure quantitative traits in Chinese families. Ann Hum Genet 69(Pt 1):45–54. doi: 10.1046/j.1529-8817.2004.00136.x PubMedCrossRefGoogle Scholar
  92. 92.
    Forster T, Chapman K, Marcelline L, Mustafa Z, Southam L, Loughlin J (2004) Finer linkage mapping of primary osteoarthritis susceptibility loci on chromosomes 4 and 16 in families with affected women. Arthritis Rheum 50(1):98–102. doi: 10.1002/art.11427 PubMedCrossRefGoogle Scholar
  93. 93.
    Loughlin J, Mustafa Z, Irven C, Smith A, Carr AJ, Sykes B et al (1999) Stratification analysis of an osteoarthritis genome screen-suggestive linkage to chromosomes 4, 6, and 16. Am J Hum Genet 65(6):1795–1798. doi: 10.1086/302685, PubMed PMID: 10577938; PubMed Central PMCID: PMCPMC1288394PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Joost O, Wilk JB, Cupples LA, Harmon M, Shearman AM, Baldwin CT et al (2002) Genetic loci influencing lung function: a genome-wide scan in the Framingham Study. Am J Respir Crit Care Med 165(6):795–799. doi: 10.1164/ajrccm.165.6.2102057 PubMedCrossRefGoogle Scholar
  95. 95.
    Kraja AT, Rao DC, Weder AB, Cooper R, Curb JD, Hanis CL et al (2005) Two major QTLs and several others relate to factors of metabolic syndrome in the family blood pressure program. Hypertension 46(4):751–757. doi: 10.1161/ PubMedCrossRefGoogle Scholar
  96. 96.
    Liu YJ, Xu FH, Shen H, Liu YZ, Deng HY, Zhao LJ et al (2004) A follow-up linkage study for quantitative trait loci contributing to obesity-related phenotypes. J Clin Endocrinol Metab 89(2):875–882. doi: 10.1210/jc.2003-030774 PubMedCrossRefGoogle Scholar
  97. 97.
    Wiltshire S, Frayling TM, Groves CJ, Levy JC, Hitman GA, Sampson M et al (2004) Evidence from a large U.K. family collection that genes influencing age of onset of type 2 diabetes map to chromosome 12p and to the MODY3/NIDDM2 locus on 12q24. Diabetes 53(3):855–860PubMedCrossRefGoogle Scholar
  98. 98.
    Rice T, Rankinen T, Province MA, Chagnon YC, Perusse L, Borecki IB et al (2000) Genome-wide linkage analysis of systolic and diastolic blood pressure: the Quebec Family Study. Circulation 102(16):1956–1963PubMedCrossRefGoogle Scholar
  99. 99.
    Silverman EK, Mosley JD, Palmer LJ, Barth M, Senter JM, Brown A et al (2002) Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. Hum Mol Genet 11(6):623–632PubMedCrossRefGoogle Scholar
  100. 100.
    Hsueh WC, St Jean PL, Mitchell BD, Pollin TI, Knowler WC, Ehm MG et al (2003) Genome-wide and fine-mapping linkage studies of type 2 diabetes and glucose traits in the Old Order Amish: evidence for a new diabetes locus on chromosome 14q11 and confirmation of a locus on chromosome 1q21-q24. Diabetes 52(2):550–557PubMedCrossRefGoogle Scholar
  101. 101.
    Ohman M, Oksanen L, Kaprio J, Koskenvuo M, Mustajoki P, Rissanen A et al (2000) Genome-wide scan of obesity in Finnish sibpairs reveals linkage to chromosome Xq24. J Clin Endocrinol Metab 85(9):3183–3190. doi: 10.1210/jcem.85.9.6797 PubMedGoogle Scholar
  102. 102.
    Almasy L, Goring HH, Diego V, Cole S, Laston S, Dyke B et al (2007) A novel obesity locus on chromosome 4q: the Strong Heart Family Study. Obesity (Silver Spring) 15(7):1741–1748. doi: 10.1038/oby.2007.207 CrossRefGoogle Scholar
  103. 103.
    Lee JH, Reed DR, Li WD, Xu W, Joo EJ, Kilker RL et al (1999) Genome scan for human obesity and linkage to markers in 20q13. Am J Hum Genet 64(1):196–209. doi: 10.1086/302195, PubMed PMID: 9915959; PubMed Central PMCID: PMCPMC1377718PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Gibbs M, Stanford JL, Jarvik GP, Janer M, Badzioch M, Peters MA et al (2000) A genomic scan of families with prostate cancer identifies multiple regions of interest. Am J Hum Genet 67(1):100–109. doi: 10.1086/302969, PubMed PMID: 10820127; PubMed Central PMCID: PMCPMC1287067PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Janer M, Friedrichsen DM, Stanford JL, Badzioch MD, Kolb S, Deutsch K et al (2003) Genomic scan of 254 hereditary prostate cancer families. Prostate 57(4):309–319. doi: 10.1002/pros.10305 PubMedCrossRefGoogle Scholar
  106. 106.
    An P, Hong Y, Weisnagel SJ, Rice T, Rankinen T, Leon AS et al (2003) Genomic scan of glucose and insulin metabolism phenotypes: the HERITAGE Family Study. Metabolism 52(2):246–253. doi: 10.1053/meta.2003.50030 PubMedCrossRefGoogle Scholar
  107. 107.
    Mitchell BD, Cole SA, Comuzzie AG, Almasy L, Blangero J, MacCluer JW et al (1999) A quantitative trait locus influencing BMI maps to the region of the beta-3 adrenergic receptor. Diabetes 48(9):1863–1867PubMedCrossRefGoogle Scholar
  108. 108.
    Arya R, Duggirala R, Almasy L, Rainwater DL, Mahaney MC, Cole S et al (2002) Linkage of high-density lipoprotein-cholesterol concentrations to a locus on chromosome 9p in Mexican Americans. Nat Genet 30(1):102–105. doi: 10.1038/ng810 PubMedCrossRefGoogle Scholar
  109. 109.
    Wilson SG, Adam G, Langdown M, Reneland R, Braun A, Andrew T et al (2006) Linkage and potential association of obesity-related phenotypes with two genes on chromosome 12q24 in a female dizygous twin cohort. Eur J Hum Genet 14(3):340–348. doi: 10.1038/sj.ejhg.5201551 PubMedCrossRefGoogle Scholar
  110. 110.
    Tejero ME, Cai G, Goring HH, Diego V, Cole SA, Bacino CA et al (2007) Linkage analysis of circulating levels of adiponectin in Hispanic children. Int J Obes (Lond) 31(3):535–542. doi: 10.1038/sj.ijo.0803436 CrossRefGoogle Scholar
  111. 111.
    Gillanders EM, Xu J, Chang BL, Lange EM, Wiklund F, Bailey-Wilson JE et al (2004) Combined genome-wide scan for prostate cancer susceptibility genes. J Natl Cancer Inst 96(16):1240–1247. doi: 10.1093/jnci/djh228 PubMedCrossRefGoogle Scholar
  112. 112.
    Chang BL, Lange EM, Dimitrov L, Valis CJ, Gillanders EM, Lange LA et al (2006) Two-locus genome-wide linkage scan for prostate cancer susceptibility genes with an interaction effect. Hum Genet 118(6):716–724. doi: 10.1007/s00439-005-0099-4 PubMedCrossRefGoogle Scholar
  113. 113.
    Xu J, Dimitrov L, Chang BL, Adams TS, Turner AR, Meyers DA et al (2005) A combined genomewide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet 77(2):219–229. doi: 10.1086/432377, PubMed PMID: 15988677; PubMed Central PMCID: PMCPMC1224525PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Elbein SC, Hoffman MD, Teng K, Leppert MF, Hasstedt SJ (1999) A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. Diabetes 48(5):1175–1182PubMedCrossRefGoogle Scholar
  115. 115.
    Allayee H, de Bruin TW, Michelle Dominguez K, Cheng LS, Ipp E, Cantor RM et al (2001) Genome scan for blood pressure in Dutch dyslipidemic families reveals linkage to a locus on chromosome 4p. Hypertension 38(4):773–778PubMedCrossRefGoogle Scholar
  116. 116.
    Arya R, Duggirala R, Jenkinson CP, Almasy L, Blangero J, O’Connell P et al (2004) Evidence of a novel quantitative-trait locus for obesity on chromosome 4p in Mexican Americans. Am J Hum Genet 74(2):272–282. doi: 10.1086/381717, PubMed PMID: 14740316; PubMed Central PMCID: PMCPMC1181925PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Stone S, Abkevich V, Hunt SC, Gutin A, Russell DL, Neff CD et al (2002) A major predisposition locus for severe obesity, at 4p15-p14. Am J Hum Genet 70(6):1459–1468, PubMed PMID: 11957135; PubMed Central PMCID: PMCPMC379132PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bethony J, Williams JT, Almasy L, Correa-Oliveira R, Blangero JC, Williams-Blangero S (2001) Genetic analysis of quantitative traits in highly ascertained samples: total serum IgE in families with asthma. Genet Epidemiol 21(Suppl 1):S174–S179PubMedGoogle Scholar
  119. 119.
    Bosse Y, Perusse L, Despres JP, Lamarche B, Chagnon YC, Rice T et al (2003) Evidence for a major quantitative trait locus on chromosome 17q21 affecting low-density lipoprotein peak particle diameter. Circulation 107(18):2361–2368. doi: 10.1161/01.CIR.0000065577.60129.F5 PubMedCrossRefGoogle Scholar
  120. 120.
    Slager SL, Schaid DJ, Cunningham JM, McDonnell SK, Marks AF, Peterson BJ et al (2003) Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am J Hum Genet 72(3):759–762. doi: 10.1086/368230, PubMed PMID: 12563560; PubMed Central PMCID: PMCPMC1180252PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Perola M, Kainulainen K, Pajukanta P, Terwilliger JD, Hiekkalinna T, Ellonen P et al (2000) Genome-wide scan of predisposing loci for increased diastolic blood pressure in Finnish siblings. J Hypertens 18(11):1579–1585PubMedCrossRefGoogle Scholar
  122. 122.
    Camp NJ, Cannon-Albright LA, Farnham JM, Baffoe-Bonnie AB, George A, Powell I et al (2007) Compelling evidence for a prostate cancer gene at 22q12.3 by the International Consortium for Prostate Cancer Genetics. Hum Mol Genet 16(11):1271–1278. doi: 10.1093/hmg/ddm075, PubMed PMID: 17478474; PubMed Central PMCID: PMCPMC2653215PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Camp NJ, Farnham JM, Cannon Albright LA (2005) Genomic search for prostate cancer predisposition loci in Utah pedigrees. Prostate 65(4):365–374. doi: 10.1002/pros.20287 PubMedCrossRefGoogle Scholar
  124. 124.
    Hartikainen JM, Tuhkanen H, Kataja V, Eskelinen M, Uusitupa M, Kosma VM et al (2006) Refinement of the 22q12-q13 breast cancer--associated region: evidence of TMPRSS6 as a candidate gene in an eastern Finnish population. Clin Cancer Res 12(5):1454–1462. doi: 10.1158/1078-0432.CCR-05-1417 PubMedCrossRefGoogle Scholar
  125. 125.
    Hartikainen JM, Tuhkanen H, Kataja V, Dunning AM, Antoniou A, Smith P et al (2005) An autosome-wide scan for linkage disequilibrium-based association in sporadic breast cancer cases in eastern Finland: three candidate regions found. Cancer Epidemiol Biomarkers Prev 14(1):75–80PubMedGoogle Scholar
  126. 126.
    Chagnon YC, Rice T, Perusse L, Borecki IB, Ho-Kim MA, Lacaille M et al (2001) Genomic scan for genes affecting body composition before and after training in Caucasians from HERITAGE. J Appl Physiol (1985) 90(5):1777–1787Google Scholar
  127. 127.
    Adeyemo A, Luke A, Cooper R, Wu X, Tayo B, Zhu X et al (2003) A genome-wide scan for body mass index among Nigerian families. Obes Res 11(2):266–273. doi: 10.1038/oby.2003.40 PubMedCrossRefGoogle Scholar
  128. 128.
    Feitosa MF, Borecki IB, Rankinen T, Rice T, Despres JP, Chagnon YC et al (2005) Evidence of QTLs on chromosomes 1q42 and 8q24 for LDL-cholesterol and apoB levels in the HERITAGE family study. J Lipid Res 46(2):281–286. doi: 10.1194/jlr.M400252-JLR200 PubMedCrossRefGoogle Scholar
  129. 129.
    Xu J, Gillanders EM, Isaacs SD, Chang BL, Wiley KE, Zheng SL et al (2003) Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate 57(4):320–325. doi: 10.1002/pros.10306 PubMedCrossRefGoogle Scholar
  130. 130.
    Xu J, Zheng SL, Chang B, Smith JR, Carpten JD, Stine OC et al (2001) Linkage of prostate cancer susceptibility loci to chromosome 1. Hum Genet 108(4):335–345PubMedCrossRefGoogle Scholar
  131. 131.
    Kotchen TA, Broeckel U, Grim CE, Hamet P, Jacob H, Kaldunski ML et al (2002) Identification of hypertension-related QTLs in African American sib pairs. Hypertension 40(5):634–639PubMedCrossRefGoogle Scholar
  132. 132.
    Jawaheer D, Seldin MF, Amos CI, Chen WV, Shigeta R, Monteiro J et al (2001) A genomewide screen in multiplex rheumatoid arthritis families suggests genetic overlap with other autoimmune diseases. Am J Hum Genet 68(4):927–936, PubMed PMID: 11254450; PubMed Central PMCID: PMCPMC1275647PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zhu X, Cooper RS, Luke A, Chen G, Wu X, Kan D et al (2002) A genome-wide scan for obesity in African-Americans. Diabetes 51(2):541–544PubMedCrossRefGoogle Scholar
  134. 134.
    Lindgren CM, Mahtani MM, Widen E, McCarthy MI, Daly MJ, Kirby A et al (2002) Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: the Botnia study. Am J Hum Genet 70(2):509–516. doi: 10.1086/338629, PubMed PMID: 11791216; PubMed Central PMCID: PMCPMC384923PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Wilkinson J, Grimley S, Collins A, Thomas NS, Holgate ST, Morton N (1998) Linkage of asthma to markers on chromosome 12 in a sample of 240 families using quantitative phenotype scores. Genomics 53(3):251–259PubMedCrossRefGoogle Scholar
  136. 136.
    Klos KL, Kardia SL, Ferrell RE, Turner ST, Boerwinkle E, Sing CF (2001) Genome-wide linkage analysis reveals evidence of multiple regions that influence variation in plasma lipid and apolipoprotein levels associated with risk of coronary heart disease. Arterioscler Thromb Vasc Biol 21(6):971–978PubMedCrossRefGoogle Scholar
  137. 137.
    Wang Q, Rao S, Shen GQ, Li L, Moliterno DJ, Newby LK et al (2004) Premature myocardial infarction novel susceptibility locus on chromosome 1P34-36 identified by genomewide linkage analysis. Am J Hum Genet 74(2):262–271. doi: 10.1086/381560, PubMed PMID: 14732905; PubMed Central PMCID: PMCPMC1181924PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Perusse L, Rice T, Chagnon YC, Despres JP, Lemieux S, Roy S et al (2001) A genome-wide scan for abdominal fat assessed by computed tomography in the Quebec Family Study. Diabetes 50(3):614–621PubMedCrossRefGoogle Scholar
  139. 139.
    Feitosa MF, Rice T, Rankinen T, Province MA, Chagnon YC, Gagnon J et al (2005) Evidence of QTLs on chromosomes 13q and 14q for triglycerides before and after 20 weeks of exercise training: the HERITAGE Family Study. Atherosclerosis 182(2):349–360. doi: 10.1016/j.atherosclerosis.2005.01.052 PubMedCrossRefGoogle Scholar
  140. 140.
    Dai F, Keighley ED, Sun G, Indugula SR, Roberts ST, Aberg K et al (2007) Genome-wide scan for adiposity-related phenotypes in adults from American Samoa. Int J Obes (Lond) 31(12):1832–1842. doi: 10.1038/sj.ijo.0803675 CrossRefGoogle Scholar
  141. 141.
    Suarez BK, Lin J, Burmester JK, Broman KW, Weber JL, Banerjee TK et al (2000) A genome screen of multiplex sibships with prostate cancer. Am J Hum Genet 66(3):933–944. doi: 10.1086/302818, PubMed PMID: 10712208; PubMed Central PMCID: PMCPMC1288174PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    An P, Teran-Garcia M, Rice T, Rankinen T, Weisnagel SJ, Bergman RN et al (2005) Genome-wide linkage scans for prediabetes phenotypes in response to 20 weeks of endurance exercise training in non-diabetic whites and blacks: the HERITAGE Family Study. Diabetologia 48(6):1142–1149. doi: 10.1007/s00125-005-1769-4 PubMedCrossRefGoogle Scholar
  143. 143.
    Shaw JT, Lovelock PK, Kesting JB, Cardinal J, Duffy D, Wainwright B et al (1998) Novel susceptibility gene for late-onset NIDDM is localized to human chromosome 12q. Diabetes 47(11):1793–1796PubMedCrossRefGoogle Scholar
  144. 144.
    Leppavuori J, Kujala U, Kinnunen J, Kaprio J, Nissila M, Heliovaara M et al (1999) Genome scan for predisposing loci for distal interphalangeal joint osteoarthritis: evidence for a locus on 2q. Am J Hum Genet 65(4):1060–1067. doi: 10.1086/302569, PubMed PMID: 10486325; PubMed Central PMCID: PMCPMC1288239PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Kenealy SJ, Babron MC, Bradford Y, Schnetz-Boutaud N, Haines JL, Rimmler JB et al (2004) A second-generation genomic screen for multiple sclerosis. Am J Hum Genet 75(6):1070–1078. doi: 10.1086/426459, PubMed PMID: 15494893; PubMed Central PMCID: PMCPMC1182142PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Iwasaki N, Cox NJ, Wang YQ, Schwarz PE, Bell GI, Honda M et al (2003) Mapping genes influencing type 2 diabetes risk and BMI in Japanese subjects. Diabetes 52(1):209–213PubMedCrossRefGoogle Scholar
  147. 147.
    An P, Freedman BI, Rich SS, Mandel SA, Arnett DK, Myers RH et al (2006) Quantitative trait loci on chromosome 8q24 for pancreatic beta-cell function and 7q11 for insulin sensitivity in obese nondiabetic white and black families: evidence from genome-wide linkage scans in the NHLBI Hypertension Genetic Epidemiology Network (HyperGEN) study. Diabetes 55(2):551–558PubMedCrossRefGoogle Scholar
  148. 148.
    Witte JS, Goddard KA, Conti DV, Elston RC, Lin J, Suarez BK et al (2000) Genomewide scan for prostate cancer-aggressiveness loci. Am J Hum Genet 67(1):92–99. doi: 10.1086/302960, PubMed PMID: 10825281; PubMed Central PMCID: PMCPMC1287106PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Chen G, Adeyemo A, Zhou J, Chen Y, Huang H, Doumatey A et al (2007) Genome-wide search for susceptibility genes to type 2 diabetes in West Africans: potential role of C-peptide. Diabetes Res Clin Pract 78(3):e1–e6. doi: 10.1016/j.diabres.2007.04.010 PubMedCrossRefGoogle Scholar
  150. 150.
    Strauch K, Bogdanow M, Fimmers R, Baur MP, Wienker TF (2001) Linkage analysis of asthma and atopy including models with genomic imprinting. Genet Epidemiol 21(Suppl 1):S204–S209PubMedGoogle Scholar
  151. 151.
    North KE, Miller MB, Coon H, Martin LJ, Peacock JM, Arnett D et al (2005) Evidence for a gene influencing fasting LDL cholesterol and triglyceride levels on chromosome 21q. Atherosclerosis 179(1):119–125. doi: 10.1016/j.atherosclerosis.2004.09.009 PubMedCrossRefGoogle Scholar
  152. 152.
    Knoblauch H, Muller-Myhsok B, Busjahn A, Ben Avi L, Bahring S, Baron H et al (2000) A cholesterol-lowering gene maps to chromosome 13q. Am J Hum Genet 66(1):157–166, PubMed PMID: 10631147; PubMed Central PMCID: PMCPMC1288321PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Hixson JE, Blangero J (2000) Genomic searches for genes that influence atherosclerosis and its risk factors. Ann N Y Acad Sci 902:1–7PubMedCrossRefGoogle Scholar
  154. 154.
    Norman RA, Bogardus C, Ravussin E (1995) Linkage between obesity and a marker near the tumor necrosis factor-alpha locus in Pima Indians. J Clin Invest 96(1):158–162. doi: 10.1172/JCI118016, PubMed PMID: 7615786; PubMed Central PMCID: PMCPMC185184PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Christensen GB, Camp NJ, Farnham JM, Cannon-Albright LA (2007) Genome-wide linkage analysis for aggressive prostate cancer in Utah high-risk pedigrees. Prostate 67(6):605–613. doi: 10.1002/pros.20554 PubMedCrossRefGoogle Scholar
  156. 156.
    Dong C, Li WD, Li D, Price RA (2005) Interaction between obesity-susceptibility loci in chromosome regions 2p25-p24 and 13q13-q21. Eur J Hum Genet 13(1):102–108. doi: 10.1038/sj.ejhg.5201292 PubMedCrossRefGoogle Scholar
  157. 157.
    Diego VP, Goring HH, Cole SA, Almasy L, Dyer TD, Blangero J et al (2006) Fasting insulin and obesity-related phenotypes are linked to chromosome 2p: the Strong Heart Family Study. Diabetes 55(6):1874–1878. doi: 10.2337/db05-0668 PubMedCrossRefGoogle Scholar
  158. 158.
    Comuzzie AG, Hixson JE, Almasy L, Mitchell BD, Mahaney MC, Dyer TD et al (1997) A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet 15(3):273–276. doi: 10.1038/ng0397-273 PubMedCrossRefGoogle Scholar
  159. 159.
    Rotimi CN, Comuzzie AG, Lowe WL, Luke A, Blangero J, Cooper RS (1999) The quantitative trait locus on chromosome 2 for serum leptin levels is confirmed in African-Americans. Diabetes 48(3):643–644PubMedCrossRefGoogle Scholar
  160. 160.
    Delplanque J, Barat-Houari M, Dina C, Gallina P, Clement K, Guy-Grand B et al (2000) Linkage and association studies between the proopiomelanocortin (POMC) gene and obesity in caucasian families. Diabetologia 43(12):1554–1557. doi: 10.1007/s001250051568 PubMedCrossRefGoogle Scholar
  161. 161.
    Hager J, Dina C, Francke S, Dubois S, Houari M, Vatin V et al (1998) A genome-wide scan for human obesity genes reveals a major susceptibility locus on chromosome 10. Nat Genet 20(3):304–308. doi: 10.1038/3123 PubMedCrossRefGoogle Scholar
  162. 162.
    Atwood LD, Samollow PB, Hixson JE, Stern MP, MacCluer JW (2001) Genome-wide linkage analysis of blood pressure in Mexican Americans. Genet Epidemiol 20(3):373–382. doi: 10.1002/gepi.7 PubMedCrossRefGoogle Scholar
  163. 163.
    Norris JM, Langefeld CD, Scherzinger AL, Rich SS, Bookman E, Beck SR et al (2005) Quantitative trait loci for abdominal fat and BMI in Hispanic-Americans and African-Americans: the IRAS Family study. Int J Obes (Lond) 29(1):67–77. doi: 10.1038/sj.ijo.0802793 CrossRefGoogle Scholar
  164. 164.
    Frayling TM, Wiltshire S, Hitman GA, Walker M, Levy JC, Sampson M et al (2003) Young-onset type 2 diabetes families are the major contributors to genetic loci in the Diabetes UK Warren 2 genome scan and identify putative novel loci on chromosomes 8q21, 21q22, and 22q11. Diabetes 52(7):1857–1863PubMedCrossRefGoogle Scholar
  165. 165.
    Platte P, Papanicolaou GJ, Johnston J, Klein CM, Doheny KF, Pugh EW et al (2003) A study of linkage and association of body mass index in the Old Order Amish. Am J Med Genet C Semin Med Genet 121C(1):71–80. doi: 10.1002/ajmg.c.20005 PubMedCrossRefGoogle Scholar
  166. 166.
    Voruganti VS, Goring HH, Diego VP, Cai G, Mehta NR, Haack K et al (2007) Genome-wide scan for serum ghrelin detects linkage on chromosome 1p36 in Hispanic children: results from the Viva La Familia study. Pediatr Res 62(4):445–450. doi: 10.1203/PDR.0b013e31813cbf02 PubMedCrossRefGoogle Scholar
  167. 167.
    Zhao JY, Xiong MM, Huang W, Wang H, Zuo J, Wu GD et al (2005) An autosomal genomic scan for loci linked to type 2 diabetes in northern Han Chinese. J Mol Med (Berl) 83(3):209–215. doi: 10.1007/s00109-004-0587-3 CrossRefGoogle Scholar
  168. 168.
    Mustafa Z, Chapman K, Irven C, Carr AJ, Clipsham K, Chitnavis J et al (2000) Linkage analysis of candidate genes as susceptibility loci for osteoarthritis-suggestive linkage of COL9A1 to female hip osteoarthritis. Rheumatology (Oxford) 39(3):299–306CrossRefGoogle Scholar
  169. 169.
    Wu X, Cooper RS, Borecki I, Hanis C, Bray M, Lewis CE et al (2002) A combined analysis of genomewide linkage scans for body mass index from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am J Hum Genet 70(5):1247–1256. doi: 10.1086/340362, PubMed PMID: 11923912; PubMed Central PMCID: PMCPMC447599PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Shearman AM, Ordovas JM, Cupples LA, Schaefer EJ, Harmon MD, Shao Y et al (2000) Evidence for a gene influencing the TG/HDL-C ratio on chromosome 7q32.3-qter: a genome-wide scan in the Framingham study. Hum Mol Genet 9(9):1315–1320PubMedCrossRefGoogle Scholar
  171. 171.
    Li WD, Dong C, Li D, Garrigan C, Price RA (2005) A genome scan for serum triglyceride in obese nuclear families. J Lipid Res 46(3):432–438. doi: 10.1194/jlr.M400391-JLR200 PubMedCrossRefGoogle Scholar
  172. 172.
    Francke S, Manraj M, Lacquemant C, Lecoeur C, Lepretre F, Passa P et al (2001) A genome-wide scan for coronary heart disease suggests in Indo-Mauritians a susceptibility locus on chromosome 16p13 and replicates linkage with the metabolic syndrome on 3q27. Hum Mol Genet 10(24):2751–2765PubMedCrossRefGoogle Scholar
  173. 173.
    Xu J, Meyers D, Freije D, Isaacs S, Wiley K, Nusskern D et al (1998) Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 20(2):175–179. doi: 10.1038/2477 PubMedCrossRefGoogle Scholar
  174. 174.
    Bochum S, Paiss T, Vogel W, Herkommer K, Hautmann R, Haeussler J (2002) Confirmation of the prostate cancer susceptibility locus HPCX in a set of 104 German prostate cancer families. Prostate 52(1):12–19. doi: 10.1002/pros.10078 PubMedCrossRefGoogle Scholar
  175. 175.
    Silander K, Scott LJ, Valle TT, Mohlke KL, Stringham HM, Wiles KR et al (2004) A large set of Finnish affected sibling pair families with type 2 diabetes suggests susceptibility loci on chromosomes 6, 11, and 14. Diabetes 53(3):821–829PubMedCrossRefGoogle Scholar
  176. 176.
    Austin MA, Edwards KL, Monks SA, Koprowicz KM, Brunzell JD, Motulsky AG et al (2003) Genome-wide scan for quantitative trait loci influencing LDL size and plasma triglyceride in familial hypertriglyceridemia. J Lipid Res 44(11):2161–2168. doi: 10.1194/jlr.M300272-JLR200 PubMedCrossRefGoogle Scholar
  177. 177.
    Lin JP (2003) Genome-wide scan on plasma triglyceride and high density lipoprotein cholesterol levels, accounting for the effects of correlated quantitative phenotypes. BMC Genet 4(Suppl 1):S47. doi: 10.1186/1471-2156-4-S1-S47, PubMed PMID: 14975115; PubMed Central PMCID: PMCPMC1866483PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Yang Q, Lai CQ, Parnell L, Cupples LA, Adiconis X, Zhu Y et al (2005) Genome-wide linkage analyses and candidate gene fine mapping for HDL3 cholesterol: the Framingham Study. J Lipid Res 46(7):1416–1425. doi: 10.1194/jlr.M400382-JLR200 PubMedCrossRefGoogle Scholar
  179. 179.
    Arya R, Lehman D, Hunt KJ, Schneider J, Almasy L, Blangero J et al (2003) Evidence for bivariate linkage of obesity and HDL-C levels in the Framingham Heart Study. BMC Genet 4(Suppl 1):S52. doi: 10.1186/1471-2156-4-S1-S52, PubMed PMID: 14975120; PubMed Central PMCID: PMCPMC1866489PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Bell CG, Benzinou M, Siddiq A, Lecoeur C, Dina C, Lemainque A et al (2004) Genome-wide linkage analysis for severe obesity in French caucasians finds significant susceptibility locus on chromosome 19q. Diabetes 53(7):1857–1865PubMedCrossRefGoogle Scholar
  181. 181.
    Wiltshire S, Hattersley AT, Hitman GA, Walker M, Levy JC, Sampson M et al (2001) A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. Am J Hum Genet 69(3):553–569, PubMed PMID: 11484155; PubMed Central PMCID: PMCPMC1235485PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Duggirala R, Blangero J, Almasy L, Arya R, Dyer TD, Williams KL et al (2001) A major locus for fasting insulin concentrations and insulin resistance on chromosome 6q with strong pleiotropic effects on obesity-related phenotypes in nondiabetic Mexican Americans. Am J Hum Genet 68(5):1149–1164. doi: 10.1086/320100, PubMed PMID: 11283790; PubMed Central PMCID: PMCPMC1226096PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Xiang K, Wang Y, Zheng T, Jia W, Li J, Chen L et al (2004) Genome-wide search for type 2 diabetes/impaired glucose homeostasis susceptibility genes in the Chinese: significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes 53(1):228–234PubMedCrossRefGoogle Scholar
  184. 184.
    Shtir C, Nagakawa IS, Duren WL, Conneely KN, Scott LJ, Silander K et al (2007) Subsets of Finns with high HDL to total cholesterol ratio show evidence for linkage to type 2 diabetes on chromosome 6q. Hum Hered 63(1):17–25. doi: 10.1159/000097927, PubMed PMID: 17179727; PubMed Central PMCID: PMCPMC2923439PubMedCrossRefGoogle Scholar
  185. 185.
    Hauser ER, Crossman DC, Granger CB, Haines JL, Jones CJ, Mooser V et al (2004) A genomewide scan for early-onset coronary artery disease in 438 families: the GENECARD Study. Am J Hum Genet 75(3):436–447. doi: 10.1086/423900, PubMed PMID: 15272420; PubMed Central PMCID: PMCPMC1182022PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Dong C, Li WD, Geller F, Lei L, Li D, Gorlova OY et al (2005) Possible genomic imprinting of three human obesity-related genetic loci. Am J Hum Genet 76(3):427–437. doi: 10.1086/428438, PubMed PMID: 15647995; PubMed Central PMCID: PMCPMC1196395PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    van Tilburg JH, Sandkuijl LA, Strengman E, Pearson PL, van Haeften TW, Wijmenga C (2003) Variance-component analysis of obesity in type 2 diabetes confirms loci on chromosomes 1q and 11q. Obes Res 11(11):1290–1294. doi: 10.1038/oby.2003.175 PubMedCrossRefGoogle Scholar
  188. 188.
    Chen G, Adeyemo AA, Johnson T, Zhou J, Amoah A, Owusu S et al (2005) A genome-wide scan for quantitative trait loci linked to obesity phenotypes among West Africans. Int J Obes (Lond) 29(3):255–259. doi: 10.1038/sj.ijo.0802873 CrossRefGoogle Scholar
  189. 189.
    Morrison AC, Felix JF, Cupples LA, Glazer NL, Loehr LR, Dehghan A et al (2010) Genomic variation associated with mortality among adults of European and African ancestry with heart failure: the cohorts for heart and aging research in genomic epidemiology consortium. Circ Cardiovasc Genet 3(3):248–255. doi: 10.1161/CIRCGENETICS.109.895995, PubMed PMID: 20400778; PubMed Central PMCID: PMCPMC3033765PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H et al (2014) The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database issue):D1001–D1006. doi: 10.1093/nar/gkt1229, PubMed PMID: 24316577; PubMed Central PMCID: PMCPMC3965119PubMedCrossRefGoogle Scholar
  191. 191.
    Cornelis MC, Fornage M, Foy M, Xun P, Gladyshev VN, Morris S et al (2015) Genome-wide association study of selenium concentrations. Hum Mol Genet 24(5):1469–1477. doi: 10.1093/hmg/ddu546, PubMed PMID: 25343990; PubMed Central PMCID: PMCPMC4321444PubMedCrossRefGoogle Scholar
  192. 192.
    Service SK, Verweij KJ, Lahti J, Congdon E, Ekelund J, Hintsanen M et al (2012) A genome-wide meta-analysis of association studies of Cloninger’s Temperament Scales. Transl Psychiatry 2, e116. doi: 10.1038/tp.2012.37, PubMed PMID: 22832960; PubMed Central PMCID: PMCPMC3365256PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Yu B, Zheng Y, Alexander D, Manolio TA, Alonso A, Nettleton JA et al (2013) Genome-wide association study of a heart failure related metabolomic profile among African Americans in the Atherosclerosis Risk in Communities (ARIC) study. Genet Epidemiol 37(8):840–845. doi: 10.1002/gepi.21752, PubMed PMID: 23934736; PubMed Central PMCID: PMCPMC4079107PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Comuzzie AG, Cole SA, Laston SL, Voruganti VS, Haack K, Gibbs RA et al (2012) Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One 7(12), e51954. doi: 10.1371/journal.pone.0051954, PubMed PMID: 23251661; PubMed Central PMCID: PMCPMC3522587PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Zhang H, Baldwin DA, Bukowski RK, Parry S, Xu Y, Song C et al (2015) A genome-wide association study of early spontaneous preterm delivery. Genet Epidemiol 39(3):217–226. doi: 10.1002/gepi.21887, PubMed PMID: 25599974; PubMed Central PMCID: PMCPMC4366311PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Fumagalli M, Sironi M, Pozzoli U, Ferrer-Admetlla A, Pattini L, Nielsen R (2011) Signatures of environmental genetic adaptation pinpoint pathogens as the main selective pressure through human evolution. PLoS Genet 7(11), e1002355. doi: 10.1371/journal.pgen.1002355, PubMed PMID: 22072984; PubMed Central PMCID: PMCPMC3207877PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    McClay JL, Adkins DE, Aberg K, Bukszar J, Khachane AN, Keefe RS et al (2011) Genome-wide pharmacogenomic study of neurocognition as an indicator of antipsychotic treatment response in schizophrenia. Neuropsychopharmacology 36(3):616–626. doi: 10.1038/npp.2010.193, PubMed PMID: 21107309; PubMed Central PMCID: PMCPMC3055694PubMedCrossRefGoogle Scholar
  198. 198.
    Kasperaviciute D, Catarino CB, Heinzen EL, Depondt C, Cavalleri GL, Caboclo LO et al (2010) Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study. Brain 133(Pt 7):2136–2147. doi: 10.1093/brain/awq130, PubMed PMID: 20522523; PubMed Central PMCID: PMCPMC2892941PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Zemunik T, Boban M, Lauc G, Jankovic S, Rotim K, Vatavuk Z et al (2009) Genome-wide association study of biochemical traits in Korcula Island, Croatia. Croat Med J 50(1):23–33, PubMed PMID: 19260141; PubMed Central PMCID: PMCPMC2657564PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Walter S, Atzmon G, Demerath EW, Garcia ME, Kaplan RC, Kumari M et al (2011) A genome-wide association study of aging. Neurobiol Aging 32(11):2109e15–2109e28. doi: 10.1016/j.neurobiolaging.2011.05.026, PubMed PMID: 21782286; PubMed Central PMCID: PMCPMC3193030CrossRefGoogle Scholar
  201. 201.
    Cross-Disorder Group of the Psychiatric Genomics C (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381(9875):1371–1379. doi: 10.1016/S0140-6736(12)62129-1, PubMed PMID: 23453885; PubMed Central PMCID: PMCPMC3714010CrossRefGoogle Scholar
  202. 202.
    Divaris K, Monda KL, North KE, Olshan AF, Reynolds LM, Hsueh WC et al (2013) Exploring the genetic basis of chronic periodontitis: a genome-wide association study. Hum Mol Genet 22(11):2312–2324. doi: 10.1093/hmg/ddt065, PubMed PMID: 23459936; PubMed Central PMCID: PMCPMC3652417PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Cheng CY, Schache M, Ikram MK, Young TL, Guggenheim JA, Vitart V et al (2013) Nine loci for ocular axial length identified through genome-wide association studies, including shared loci with refractive error. Am J Hum Genet 93(2):264–277. doi: 10.1016/j.ajhg.2013.06.016, PubMed PMID: 24144296; PubMed Central PMCID: PMCPMC3772747PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Fransen E, Bonneux S, Corneveaux JJ, Schrauwen I, Di Berardino F, White CH et al (2015) Genome-wide association analysis demonstrates the highly polygenic character of age-related hearing impairment. Eur J Hum Genet 23(1):110–115. doi: 10.1038/ejhg.2014.56, PubMed PMID: 24939585; PubMed Central PMCID: PMCPMC4266741PubMedCrossRefGoogle Scholar
  205. 205.
    Padyukov L, Seielstad M, Ong RT, Ding B, Ronnelid J, Seddighzadeh M et al (2011) A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann Rheum Dis 70(2):259–265. doi: 10.1136/ard.2009.126821, PubMed PMID: 21156761; PubMed Central PMCID: PMCPMC3015094PubMedCrossRefGoogle Scholar
  206. 206.
    Draaken M, Knapp M, Pennimpede T, Schmidt JM, Ebert AK, Rosch W et al (2015) Genome-wide association study and meta-analysis identify ISL1 as genome-wide significant susceptibility gene for bladder exstrophy. PLoS Genet 11(3), e1005024. doi: 10.1371/journal.pgen.1005024, PubMed PMID: 25763902; PubMed Central PMCID: PMCPMC4357422PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Yamada Y, Fuku N, Tanaka M, Aoyagi Y, Sawabe M, Metoki N et al (2009) Identification of CELSR1 as a susceptibility gene for ischemic stroke in Japanese individuals by a genome-wide association study. Atherosclerosis 207(1):144–149. doi: 10.1016/j.atherosclerosis.2009.03.038 PubMedCrossRefGoogle Scholar
  208. 208.
    Carrasquillo MM, Nicholson AM, Finch N, Gibbs JR, Baker M, Rutherford NJ et al (2010) Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Hum Genet 87(6):890–897. doi: 10.1016/j.ajhg.2010.11.002, PubMed PMID: 21087763; PubMed Central PMCID: PMCPMC2997361PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Barber MJ, Mangravite LM, Hyde CL, Chasman DI, Smith JD, McCarty CA et al (2010) Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One 5(3), e9763. doi: 10.1371/journal.pone.0009763, PubMed PMID: 20339536; PubMed Central PMCID: PMCPMC2842298PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Global Lipids Genetics C, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45(11):1274–1283. doi: 10.1038/ng.2797, PubMed PMID: 24097068; PubMed Central PMCID: PMCPMC3838666CrossRefGoogle Scholar
  211. 211.
    Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466(7307):707–713. doi: 10.1038/nature09270, PubMed PMID: 20686565; PubMed Central PMCID: PMCPMC3039276PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Aulchenko YS, Ripatti S, Lindqvist I, Boomsma D, Heid IM, Pramstaller PP et al (2009) Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat Genet 41(1):47–55. doi: 10.1038/ng.269, PubMed PMID: 19060911; PubMed Central PMCID: PMCPMC2687074PubMedCrossRefGoogle Scholar
  213. 213.
    Ko A, Cantor RM, Weissglas-Volkov D, Nikkola E, Reddy PM, Sinsheimer JS et al (2014) Amerindian-specific regions under positive selection harbour new lipid variants in Latinos. Nat Commun 5:3983. doi: 10.1038/ncomms4983, PubMed PMID: 24886709; PubMed Central PMCID: PMCPMC4062071PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ et al (2008) Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 40(2):189–197. doi: 10.1038/ng.75, PubMed PMID: 18193044; PubMed Central PMCID: PMCPMC2682493PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Waterworth DM, Ricketts SL, Song K, Chen L, Zhao JH, Ripatti S et al (2010) Genetic variants influencing circulating lipid levels and risk of coronary artery disease. Arterioscler Thromb Vasc Biol 30(11):2264–2276. doi: 10.1161/ATVBAHA.109.201020, PubMed PMID: 20864672; PubMed Central PMCID: PMCPMC3891568PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J et al (2009) Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 41(1):35–46. doi: 10.1038/ng.271, PubMed PMID: 19060910; PubMed Central PMCID: PMCPMC2687077PubMedCrossRefGoogle Scholar
  217. 217.
    Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, Schadt EE et al (2009) Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41(1):56–65. doi: 10.1038/ng.291, PubMed PMID: 19060906; PubMed Central PMCID: PMCPMC2881676PubMedCrossRefGoogle Scholar
  218. 218.
    Chasman DI, Pare G, Mora S, Hopewell JC, Peloso G, Clarke R et al (2009) Forty-three loci associated with plasma lipoprotein size, concentration, and cholesterol content in genome-wide analysis. PLoS Genet 5(11), e1000730. doi: 10.1371/journal.pgen.1000730, PubMed PMID: 19936222; PubMed Central PMCID: PMCPMC2777390PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Middelberg RP, Ferreira MA, Henders AK, Heath AC, Madden PA, Montgomery GW et al (2011) Genetic variants in LPL, OASL and TOMM40/APOE-C1-C2-C4 genes are associated with multiple cardiovascular-related traits. BMC Med Genet 12:123. doi: 10.1186/1471-2350-12-123, PubMed PMID: 21943158; PubMed Central PMCID: PMCPMC3189113PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Lettre G, Palmer CD, Young T, Ejebe KG, Allayee H, Benjamin EJ et al (2011) Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS Genet 7(2), e1001300. doi: 10.1371/journal.pgen.1001300, PubMed PMID: 21347282; PubMed Central PMCID: PMCPMC3037413PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Sandhu MS, Waterworth DM, Debenham SL, Wheeler E, Papadakis K, Zhao JH et al (2008) LDL-cholesterol concentrations: a genome-wide association study. Lancet 371(9611):483–491. doi: 10.1016/S0140-6736(08)60208-1, PubMed PMID: 18262040; PubMed Central PMCID: PMCPMC2292820PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R et al (2008) Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 40(2):161–169. doi: 10.1038/ng.76 PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Wallace C, Newhouse SJ, Braund P, Zhang F, Tobin M, Falchi M et al (2008) Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia. Am J Hum Genet 82(1):139–149. doi: 10.1016/j.ajhg.2007.11.001, PubMed PMID: 18179892; PubMed Central PMCID: PMCPMC2253977PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY et al (2011) Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet 43(10):990–995. doi: 10.1038/ng.939 PubMedCrossRefGoogle Scholar
  225. 225.
    Dichgans M, Malik R, Konig IR, Rosand J, Clarke R, Gretarsdottir S et al (2014) Shared genetic susceptibility to ischemic stroke and coronary artery disease: a genome-wide analysis of common variants. Stroke 45(1):24–36. doi: 10.1161/STROKEAHA.113.002707, PubMed PMID: 24262325; PubMed Central PMCID: PMCPMC4112102PubMedCrossRefGoogle Scholar
  226. 226.
    Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN et al (2011) Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet 377(9763):383–392. doi: 10.1016/S0140-6736(10)61996-4, PubMed PMID: 21239051; PubMed Central PMCID: PMCPMC3297116PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Coronary Artery Disease Genetics C (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet 43(4):339–344. doi: 10.1038/ng.782 CrossRefGoogle Scholar
  228. 228.
    Myocardial Infarction Genetics C, Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D et al (2009) Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 41(3):334–341. doi: 10.1038/ng.327, PubMed PMID: 19198609; PubMed Central PMCID: PMCPMC2681011CrossRefGoogle Scholar
  229. 229.
    Grallert H, Dupuis J, Bis JC, Dehghan A, Barbalic M, Baumert J et al (2012) Eight genetic loci associated with variation in lipoprotein-associated phospholipase A2 mass and activity and coronary heart disease: meta-analysis of genome-wide association studies from five community-based studies. Eur Heart J 33(2):238–251. doi: 10.1093/eurheartj/ehr372, PubMed PMID: 22003152; PubMed Central PMCID: PMCPMC3258449PubMedCrossRefGoogle Scholar
  230. 230.
    Chu AY, Guilianini F, Grallert H, Dupuis J, Ballantyne CM, Barratt BJ et al (2012) Genome-wide association study evaluating lipoprotein-associated phospholipase A2 mass and activity at baseline and after rosuvastatin therapy. Circ Cardiovasc Genet 5(6):676–685. doi: 10.1161/CIRCGENETICS.112.963314 PubMedCrossRefGoogle Scholar
  231. 231.
    Tonjes A, Koriath M, Schleinitz D, Dietrich K, Bottcher Y, Rayner NW et al (2009) Genetic variation in GPR133 is associated with height: genome wide association study in the self-contained population of Sorbs. Hum Mol Genet 18(23):4662–4668PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Yashin AI, Wu D, Arbeev KG, Ukraintseva SV (2010) Joint influence of small-effect genetic variants on human longevity. Aging (Albany, NY) 2(9):612–620, PubMed PMID: 20834067; PubMed Central PMCID: PMCPMC2984609CrossRefGoogle Scholar
  233. 233.
    Melzer D, Perry JR, Hernandez D, Corsi AM, Stevens K, Rafferty I et al (2008) A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet 4(5), e1000072. doi: 10.1371/journal.pgen.1000072, PubMed PMID: 18464913; PubMed Central PMCID: PMCPMC2362067PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Marroni F, Pfeufer A, Aulchenko YS, Franklin CS, Isaacs A, Pichler I et al (2009) A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations: the EUROSPAN project. Circ Cardiovasc Genet 2(4):322–328. doi: 10.1161/CIRCGENETICS.108.833806, PubMed PMID: 20031603; PubMed Central PMCID: PMCPMC2760953PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Xie T, Deng L, Mei P, Zhou Y, Wang B, Zhang J et al (2014) Genome-wide association study combining pathway analysis for typical sporadic amyotrophic lateral sclerosis in Chinese Han populations. Neurobiol Aging 35(7):1778e9–e23. doi: 10.1016/j.neurobiolaging.2014.01.014 CrossRefGoogle Scholar
  236. 236.
    Lee Y, Yoon KA, Joo J, Lee D, Bae K, Han JY et al (2013) Prognostic implications of genetic variants in advanced non-small cell lung cancer: a genome-wide association study. Carcinogenesis 34(2):307–313. doi: 10.1093/carcin/bgs356 PubMedCrossRefGoogle Scholar
  237. 237.
    Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK et al (2011) Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet 7(7), e1002193. doi: 10.1371/journal.pgen.1002193, PubMed PMID: 21829377; PubMed Central PMCID: PMCPMC3145614PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Tao S, Wang Z, Feng J, Hsu FC, Jin G, Kim ST et al (2012) A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants. Carcinogenesis 33(3):598–603. doi: 10.1093/carcin/bgr316, PubMed PMID: 22219177; PubMed Central PMCID: PMCPMC3291863PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Wu C, Miao X, Huang L, Che X, Jiang G, Yu D et al (2012) Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet 44(1):62–66. doi: 10.1038/ng.1020 CrossRefGoogle Scholar
  240. 240.
    Kou I, Takahashi Y, Johnson TA, Takahashi A, Guo L, Dai J et al (2013) Genetic variants in GPR126 are associated with adolescent idiopathic scoliosis. Nat Genet 45(6):676–679. doi: 10.1038/ng.2639 PubMedCrossRefGoogle Scholar
  241. 241.
    He M, Xu M, Zhang B, Liang J, Chen P, Lee JY et al (2015) Meta-analysis of genome-wide association studies of adult height in East Asians identifies 17 novel loci. Hum Mol Genet 24(6):1791–1800. doi: 10.1093/hmg/ddu583, PubMed PMID: 25429064; PubMed Central PMCID: PMCPMC4351379PubMedCrossRefGoogle Scholar
  242. 242.
    Gudbjartsson DF, Walters GB, Thorleifsson G, Stefansson H, Halldorsson BV, Zusmanovich P et al (2008) Many sequence variants affecting diversity of adult human height. Nat Genet 40(5):609–615. doi: 10.1038/ng.122 PubMedCrossRefGoogle Scholar
  243. 243.
    Lettre G, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S et al (2008) Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 40(5):584–591. doi: 10.1038/ng.125, PubMed PMID: 18391950; PubMed Central PMCID: PMCPMC2687076PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Liu JZ, Medland SE, Wright MJ, Henders AK, Heath AC, Madden PA et al (2010) Genome-wide association study of height and body mass index in Australian twin families. Twin Res Hum Genet 13(2):179–193. doi: 10.1375/twin.13.2.179, PubMed PMID: 20397748; PubMed Central PMCID: PMCPMC3232006PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Soranzo N, Rivadeneira F, Chinappen-Horsley U, Malkina I, Richards JB, Hammond N et al (2009) Meta-analysis of genome-wide scans for human adult stature identifies novel Loci and associations with measures of skeletal frame size. PLoS Genet 5(4), e1000445. doi: 10.1371/journal.pgen.1000445, PubMed PMID: 19343178; PubMed Central PMCID: PMCPMC2661236PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, Rivadeneira F et al (2010) Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467(7317):832–838. doi: 10.1038/nature09410, PubMed PMID: 20881960; PubMed Central PMCID: PMCPMC2955183PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Berndt SI, Gustafsson S, Magi R, Ganna A, Wheeler E, Feitosa MF et al (2013) Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet 45(5):501–512. doi: 10.1038/ng.2606, PubMed PMID: 23563607; PubMed Central PMCID: PMCPMC3973018PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S et al (2014) Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet 46(11):1173–1186. doi: 10.1038/ng.3097, PubMed PMID: 25282103; PubMed Central PMCID: PMCPMC4250049PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD et al (2010) Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat Genet 42(1):45–52. doi: 10.1038/ng.500, PubMed PMID: 20010835; PubMed Central PMCID: PMCPMC2832852PubMedCrossRefGoogle Scholar
  250. 250.
    Hancock DB, Artigas MS, Gharib SA, Henry A, Manichaikul A, Ramasamy A et al (2012) Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function. PLoS Genet 8(12), e1003098. doi: 10.1371/journal.pgen.1003098, PubMed PMID: 23284291; PubMed Central PMCID: PMCPMC3527213PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Wilk JB, Shrine NR, Loehr LR, Zhao JH, Manichaikul A, Lopez LM et al (2012) Genome-wide association studies identify CHRNA5/3 and HTR4 in the development of airflow obstruction. Am J Respir Crit Care Med 186(7):622–632. doi: 10.1164/rccm.201202-0366OC, PubMed PMID: 22837378; PubMed Central PMCID: PMCPMC3480517PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Del-Aguila JL, Beitelshees AL, Cooper-Dehoff RM, Chapman AB, Gums JG, Bailey K et al (2014) Genome-wide association analyses suggest NELL1 influences adverse metabolic response to HCTZ in African Americans. Pharmacogenomics J 14(1):35–40. doi: 10.1038/tpj.2013.3, PubMed PMID: 23400010; PubMed Central PMCID: PMCPMC3812324PubMedCrossRefGoogle Scholar
  253. 253.
    van der Valk RJ, Kreiner-Moller E, Kooijman MN, Guxens M, Stergiakouli E, Saaf A et al (2015) A novel common variant in DCST2 is associated with length in early life and height in adulthood. Hum Mol Genet 24(4):1155–1168. doi: 10.1093/hmg/ddu510, PubMed PMID: 25281659; PubMed Central PMCID: PMCPMC4447786PubMedCrossRefGoogle Scholar
  254. 254.
    Kiel DP, Demissie S, Dupuis J, Lunetta KL, Murabito JM, Karasik D (2007) Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Med Genet 8(Suppl 1):S14. doi: 10.1186/1471-2350-8-S1-S14, PubMed PMID: 17903296; PubMed Central PMCID: PMCPMC1995606PubMedPubMedCentralCrossRefGoogle Scholar
  255. 255.
    Adkins DE, Aberg K, McClay JL, Bukszar J, Zhao Z, Jia P et al (2011) Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol Psychiatry 16(3):321–332. doi: 10.1038/mp.2010.14, PubMed PMID: 20195266; PubMed Central PMCID: PMCPMC2891163PubMedCrossRefGoogle Scholar
  256. 256.
    Bush WS, Moore JH (2012) Chapter 11: Genome-wide association studies. PLoS Comput Biol 8(12), e1002822. doi: 10.1371/journal.pcbi.1002822, PubMed PMID: 23300413; PubMed Central PMCID: PMCPMC3531285PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Consortium GT (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45(6):580–585. doi: 10.1038/ng.2653, PubMed PMID: 23715323; PubMed Central PMCID: PMCPMC4010069CrossRefGoogle Scholar
  258. 258.
    Kim JJ, Park YM, Baik KH, Choi HY, Yang GS, Koh I et al (2012) Exome sequencing and subsequent association studies identify five amino acid-altering variants influencing human height. Hum Genet 131(3):471–478. doi: 10.1007/s00439-011-1096-4 PubMedCrossRefGoogle Scholar
  259. 259.
    Fischer L, Wilde C, Sch­neberg T, Liebscher I (2016) Functional relevance of naturally occurring mutations in adhesion G protein-coupled receptor ADGRD1 (GPR133). BMC Genomics (in press)Google Scholar
  260. 260.
    Stäubert C, Le Duc D, Schöneberg T (2014) Examining the dynamic evolution of G protein-coupled receptors. In: Stevens CW (ed) G protein-coupled receptor genetics: research and methods in the post-genomic era. Springer, New York, NY, pp 23–44CrossRefGoogle Scholar
  261. 261.
    Rosenthal SM, Feldman BJ, Vargas GA, Gitelman SE (2006) Nephrogenic syndrome of inappropriate antidiuresis (NSIAD): a paradigm for activating mutations causing endocrine dysfunction. Pediatr Endocrinol Rev 4(Suppl 1):66–70PubMedGoogle Scholar
  262. 262.
    Mendes HF, van der Spuy J, Chapple JP, Cheetham ME (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11(4):177–185. doi: 10.1016/j.molmed.2005.02.007 PubMedCrossRefGoogle Scholar
  263. 263.
    Schoneberg T, Schulz A, Biebermann H, Hermsdorf T, Rompler H, Sangkuhl K (2004) Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 104(3):173–206PubMedCrossRefGoogle Scholar
  264. 264.
    Spiegel AM (2007) Inherited endocrine diseases involving G proteins and G protein-coupled receptors. Endocr Dev 11:133–144. doi: 10.1159/0000111069 PubMedGoogle Scholar
  265. 265.
    Thompson MD, Hendy GN, Percy ME, Bichet DG, Cole DE (2014) G protein-coupled receptor mutations and human genetic disease. Methods Mol Biol 1175:153–187. doi: 10.1007/978-1-4939-0956-8_8 PubMedCrossRefGoogle Scholar
  266. 266.
    Vassart G, Costagliola S (2011) G protein-coupled receptors: mutations and endocrine diseases. Nat Rev Endocrinol 7(6):362–372. doi: 10.1038/nrendo.2011.20 PubMedCrossRefGoogle Scholar
  267. 267.
    Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene ND et al (2012) Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 33(2):440–447. doi: 10.1002/humu.21662 PubMedCrossRefGoogle Scholar
  268. 268.
    Gonzalez-Garay ML, Aldrich MB, Rasmussen JC, Guilliod R, Lapinski PE, King PD et al (2016) A novel mutation in CELSR1 is associated with hereditary lymphedema. Vasc Cell 8:1. doi: 10.1186/s13221-016-0035-5, PubMed PMID: 26855770; PubMed Central PMCID: PMCPMC4743364PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L, Straussberg R et al (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303(5666):2033–2036PubMedCrossRefGoogle Scholar
  270. 270.
    Sigoillot SM, Monk KR, Piao X, Selimi F, Harty BL (2016) Adhesion G protein-coupled receptors in the nervous system: from synapse and dendrite morphogenesis to myelination. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  271. 271.
    Weston MD, Luijendijk MW, Humphrey KD, Moller C, Kimberling WJ (2004) Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet 74(2):357–366PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Knapp B, Wolfrum U (2016) Adhesion G protein-coupled receptor-related protein networks. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  273. 273.
    Ravenscroft G, Nolent F, Rajagopalan S, Meireles AM, Paavola KJ, Gaillard D et al (2015) Mutations of GPR126 are responsible for severe arthrogryposis multiplex congenita. Am J Hum Genet 96(6):955–961. doi: 10.1016/j.ajhg.2015.04.014, PubMed PMID: 26004201; PubMed Central PMCID: PMCPMC4457946PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Boyden SE, Desai A, Cruse G, Young ML, Bolan HC, Scott LM et al (2016) Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med 374(7):656–663. doi: 10.1056/NEJMoa1500611, PubMed PMID: 26841242; PubMed Central PMCID: PMCPMC4782791PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Nieberler M, Kittel RJ, Petrenko AG, Lin H-H, Langenhan T (2016) Control of adhesion GPCR function through proteolytic processing. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  276. 276.
    Scholz N, Monk KR, Kittel RJ, Langenhan T (2016) Adhesion GPCRs as a putative class of metabotropic mechanosensors. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  277. 277.
    Hamann J, Hsiao C-C, Lee CS, Ravichandran KS, Lin H-H (2016) Adhesion GPCRs as modulators of immune cell function. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  278. 278.
    Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K, Shi D et al (2010) Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci 13(6):700–707. doi: 10.1038/nn.2555 PubMedCrossRefGoogle Scholar
  279. 279.
    Cortijo C, Gouzi M, Tissir F, Grapin-Botton A (2012) Planar cell polarity controls pancreatic beta cell differentiation and glucose homeostasis. Cell Rep 2(6):1593–1606. doi: 10.1016/j.celrep.2012.10.016, PubMed PMID: 23177622; PubMed Central PMCID: PMCPMC3606931PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P et al (2010) Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab 12(3):213–223. doi: 10.1016/j.cmet.2010.08.006 PubMedCrossRefGoogle Scholar
  281. 281.
    Parker SC, Gartner J, Cardenas-Navia I, Wei X, Ozel Abaan H, Ajay SS et al (2012) Mutational signatures of de-differentiation in functional non-coding regions of melanoma genomes. PLoS Genet 8(8), e1002871. doi: 10.1371/journal.pgen.1002871, PubMed PMID: 22912592; PubMed Central PMCID: PMCPMC3415438PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P, McLaren S et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886. doi: 10.1126/science.aaa6806, PubMed PMID: 25999502; PubMed Central PMCID: PMCPMC4471149PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Pabst C, Bergeron A, Lavallee VP, Yeh J, Gendron P, Norddahl GL et al (2016) GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood 127(16):2018–2027. doi: 10.1182/blood-2015-11-683649, Epub 2016 Feb 1PubMedCrossRefGoogle Scholar
  284. 284.
    Tang X, Jin R, Qu G, Wang X, Li Z, Yuan Z et al (2013) GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Galphaq-p63RhoGEF-Rho GTPase pathway. Cancer Res 73(20):6206–6218. doi: 10.1158/0008-5472.CAN-13-1049 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Integrated Research and Treatment Center (IFB) AdiposityDiseasesMedical Faculty, University of LeipzigLeipzigGermany
  2. 2.Institute of BiochemistryMedical Faculty, University of LeipzigLeipzigGermany

Personalised recommendations