Control of Adhesion GPCR Function Through Proteolytic Processing

  • Matthias Nieberler
  • Robert J. Kittel
  • Alexander G. Petrenko
  • Hsi-Hsien LinEmail author
  • Tobias LangenhanEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 234)

Graphical Abstract

Proteolytic processing events in adhesion GPCRs. aGPCRs can undergo multiple autoproteolytic (red asterisks) and proteolytic processing events by exogenous proteases (yellow asterisks) that may be involved in signaling events of the receptors.


Proteolytic processing is an unusual property of adhesion family G protein-coupled receptors (aGPCRs) that was observed upon their cloning and biochemical characterization.Ever since, much effort has been dedicated to delineate the mechanisms and requirements for cleavage events in the control of aGPCR function. Most notably, all aGPCRs possess a juxtamembrane protein fold, the GPCR autoproteolysis-inducing (GAIN) domain, which operates as an autoprotease for many aGPCR homologs investigated thus far. Analysis of its autoproteolytic reaction, the consequences for receptor fate and function, and the allocation of physiological effects to this peculiar feature of aGPCRs has occupied the experimental agenda of the aGPCR field and shaped our current understanding of the signaling properties and cell biological effects of aGPCRs. Interestingly, individual aGPCRs may undergo additional proteolytic steps, one of them resulting in shedding of the entire ectodomain that is secreted and can function independently. Here, we summarize the current state of knowledge on GAIN domain-mediated and GAIN domain-independent aGPCR cleavage events and their significance for the pharmacological and cellular actions of aGPCRs. Further, we compare and contrast the proteolytic profile of aGPCRs with known signaling routes that are governed through proteolysis of surface molecules such as the Notch and ephrin pathways.


Adhesion GPCR GAIN domain GPS Proteolysis Autoproteolysis 



The writing of this manuscript was supported by grants from the Deutsche Forschungsgemeinschaft to R.J.K. and T.L. (Research Unit FOR 2149, Projects P1 [LA 2861/4-1] and P3 [LA 2861/5-1, KI 1460/2-1]; SFB 1047, Project A5; SFB-TR 166 Projects B4 and C3; LA 2861/7-1. A.G.P. acknowledges support from the Russian Science Foundation (14-14-01195), H.-H.L. acknowledges support from the Ministry of Science and Technology, Taiwan (MOST-104-2320-B-182-035-MY3), and the Chang Gung Memorial Hospital (CMRPD1C0633, CMRPD1D0072-3, CMRPD1D0392).


  1. 1.
    Hamann J, Aust G, Arac D, Engel FB, Formstone C et al (2015) International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G protein-coupled receptors. Pharmacol Rev 67:338–367PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Lin HH, Stacey M, Yona S, Chang GW (2010) GPS proteolytic cleavage of Adhesion-GPCRs. Adv Exp Med Biol 706:49–58PubMedCrossRefGoogle Scholar
  3. 3.
    Stacey M, Lin HH, Gordon S, McKnight AJ (2000) LNB-TM7, a group of seven-transmembrane proteins related to family-B G-protein-coupled receptors. Trends Biochem Sci 25:284–289PubMedCrossRefGoogle Scholar
  4. 4.
    Gray JX, Haino M, Roth MJ, Maguire JE, Jensen PN et al (1996) CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J Immunol 157:5438–5447PubMedGoogle Scholar
  5. 5.
    Krasnoperov V, Bittner MA, Beavis R, Kuang Y, Salnikow KV et al (1997) alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18:925–937PubMedCrossRefGoogle Scholar
  6. 6.
    Krasnoperov V, Bittner MA, Holz RW, Chepurny O, Petrenko AG (1999) Structural requirements for alpha-latrotoxin binding and alpha-latrotoxin-stimulated secretion. A study with calcium-independent receptor of alpha-latrotoxin (CIRL) deletion mutants. J Biol Chem 274:3590–3596PubMedCrossRefGoogle Scholar
  7. 7.
    Chang GW, Stacey M, Kwakkenbos MJ, Hamann J, Gordon S et al (2003) Proteolytic cleavage of the EMR2 receptor requires both the extracellular stalk and the GPS motif. FEBS Lett 547:145–150PubMedCrossRefGoogle Scholar
  8. 8.
    Lee JJ, Ekker SC, von Kessler DP, Porter JA, Sun BI et al (1994) Autoproteolysis in hedgehog protein biogenesis. Science 266:1528–1537PubMedCrossRefGoogle Scholar
  9. 9.
    Porter JA, von Kessler DP, Ekker SC, Young KE, Lee JJ et al (1995) The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature 374:363–366PubMedCrossRefGoogle Scholar
  10. 10.
    Guan C, Cui T, Rao V, Liao W, Benner J et al (1996) Activation of glycosylasparaginase. Formation of active N-terminal threonine by intramolecular autoproteolysis. J Biol Chem 271:1732–1737PubMedCrossRefGoogle Scholar
  11. 11.
    Lin HH, Chang GW, Davies JQ, Stacey M, Harris J et al (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832PubMedCrossRefGoogle Scholar
  12. 12.
    Oinonen C, Tikkanen R, Rouvinen J, Peltonen L (1995) Three-dimensional structure of human lysosomal aspartylglucosaminidase. Nat Struct Biol 2:1102–1108PubMedCrossRefGoogle Scholar
  13. 13.
    Tikkanen R, Riikonen A, Oinonen C, Rouvinen R, Peltonen L (1996) Functional analyses of active site residues of human lysosomal aspartylglucosaminidase: implications for catalytic mechanism and autocatalytic activation. EMBO J 15:2954–2960PubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu Q, Buckley D, Guan C, Guo HC (1999) Structural insights into the mechanism of intramolecular proteolysis. Cell 98:651–661PubMedCrossRefGoogle Scholar
  15. 15.
    Krasnoperov V, Lu Y, Buryanovsky L, Neubert TA, Ichtchenko K et al (2002) Post-translational proteolytic processing of the calcium-independent receptor of alpha-latrotoxin (CIRL), a natural chimera of the cell adhesion protein and the G protein-coupled receptor. Role of the G protein-coupled receptor proteolysis site (GPS) motif. J Biol Chem 277:46518–46526PubMedCrossRefGoogle Scholar
  16. 16.
    Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N et al (2008) Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a G alpha 12/13 and Rho pathway. J Biol Chem 283:14469–14478PubMedCrossRefGoogle Scholar
  17. 17.
    Qian F, Boletta A, Bhunia AK, Xu H, Liu L et al (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci U S A 99:16981–16986PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Yu S, Hackmann K, Gao J, He X, Piontek K et al (2007) Essential role of cleavage of Polycystin-1 at G protein-coupled receptor proteolytic site for kidney tubular structure. Proc Natl Acad Sci U S A 104:18688–18693PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Arac D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31:1364–1378PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Hsiao CC, Cheng KF, Chen HY, Chou YH, Stacey M et al (2009) Site-specific N-glycosylation regulates the GPS auto-proteolysis of CD97. FEBS Lett 583:3285–3290PubMedCrossRefGoogle Scholar
  21. 21.
    Wei W, Hackmann K, Xu H, Germino G, Qian F (2007) Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem 282:21729–21737PubMedCrossRefGoogle Scholar
  22. 22.
    Deyev IE, Petrenko AG (2010) Regulation of CIRL-1 proteolysis and trafficking. Biochimie 92:418–422PubMedCrossRefGoogle Scholar
  23. 23.
    Araç D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  24. 24.
    Prömel S, Langenhan T, Arac D (2013) Matching structure with function: the GAIN domain of adhesion-GPCR and PKD1-like proteins. Trends Pharmacol Sci 34:470–478PubMedCrossRefGoogle Scholar
  25. 25.
    Langenhan T, Aust G, Hamann J (2013) Sticky signaling–adhesion class G protein-coupled receptors take the stage. Sci Signal 6:re3PubMedCrossRefGoogle Scholar
  26. 26.
    Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466:869–873PubMedCrossRefGoogle Scholar
  27. 27.
    Piao X, Hill RS, Bodell A, Chang BS, Basel-Vanagaite L et al (2004) G protein-coupled receptor-dependent development of human frontal cortex. Science 303:2033–2036PubMedCrossRefGoogle Scholar
  28. 28.
    Abe J, Fukuzawa T, Hirose S (2002) Cleavage of Ig-Hepta at a “SEA” module and at a conserved G protein-coupled receptor proteolytic site. J Biol Chem 277:23391–23398PubMedCrossRefGoogle Scholar
  29. 29.
    Bork P, Patthy L (1995) The SEA module: a new extracellular domain associated with O-glycosylation. Protein Sci 4:1421–1425PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Khatri IA, Wang R, Forstner JF (2003) SEA (sea-urchin sperm protein, enterokinase and agrin)-module cleavage, association of fragments and membrane targeting of rat intestinal mucin Muc3. Biochem J 372:263–270PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Palmai-Pallag T, Khodabukus N, Kinarsky L, Leir SH, Sherman S et al (2005) The role of the SEA (sea urchin sperm protein, enterokinase and agrin) module in cleavage of membrane-tethered mucins. FEBS J 272:2901–2911PubMedCrossRefGoogle Scholar
  32. 32.
    Wreschner DH, McGuckin MA, Williams SJ, Baruch A, Yoeli M et al (2002) Generation of ligand-receptor alliances by “SEA” module-mediated cleavage of membrane-associated mucin proteins. Protein Sci 11:698–706PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Levitin F, Stern O, Weiss M, Gil-Henn C, Ziv R et al (2005) The MUC1 SEA module is a self-cleaving domain. J Biol Chem 280:33374–33386PubMedCrossRefGoogle Scholar
  34. 34.
    Johansson DG, Wallin G, Sandberg A, Macao B, Aqvist J et al (2009) Protein autoproteolysis: conformational strain linked to the rate of peptide cleavage by the pH dependence of the N → O acyl shift reaction. J Am Chem Soc 131:9475–9477PubMedCrossRefGoogle Scholar
  35. 35.
    Macao B, Johansson DG, Hansson GC, Hard T (2006) Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Nat Struct Mol Biol 13:71–76PubMedCrossRefGoogle Scholar
  36. 36.
    Johansson DG, Macao B, Sandberg A, Hard T (2008) SEA domain autoproteolysis accelerated by conformational strain: mechanistic aspects. J Mol Biol 377:1130–1143PubMedCrossRefGoogle Scholar
  37. 37.
    Sandberg A, Johansson DG, Macao B, Hard T (2008) SEA domain autoproteolysis accelerated by conformational strain: energetic aspects. J Mol Biol 377:1117–1129PubMedCrossRefGoogle Scholar
  38. 38.
    Fukuzawa T, Hirose S (2006) Multiple processing of Ig-Hepta/GPR116, a G protein-coupled receptor with immunoglobulin (Ig)-like repeats, and generation of EGF2-like fragment. J Biochem 140:445–452PubMedCrossRefGoogle Scholar
  39. 39.
    Ariestanti DM, Ando H, Hirose S, Nakamura N (2015) Targeted disruption of Ig-Hepta/Gpr116 causes emphysema-like symptoms that are associated with alveolar macrophage activation. J Biol Chem 290:11032–11040PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bridges JP, Ludwig MG, Mueller M, Kinzel B, Sato A et al (2013) Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size. Am J Respir Cell Mol Biol 49:348–357PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Fukuzawa T, Ishida J, Kato A, Ichinose T, Ariestanti DM et al (2013) Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D. PLoS One 8, e69451PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Nie T, Hui X, Gao X, Li K, Lin W et al (2012) Adipose tissue deletion of Gpr116 impairs insulin sensitivity through modulation of adipose function. FEBS Lett 586:3618–3625PubMedCrossRefGoogle Scholar
  43. 43.
    Tang X, Jin R, Qu G, Wang X, Li Z et al (2013) GPR116, an adhesion G-protein-coupled receptor, promotes breast cancer metastasis via the Galphaq-p63RhoGEF-Rho GTPase pathway. Cancer Res 73:6206–6218PubMedCrossRefGoogle Scholar
  44. 44.
    Yang MY, Hilton MB, Seaman S, Haines DC, Nagashima K et al (2013) Essential regulation of lung surfactant homeostasis by the orphan G protein-coupled receptor GPR116. Cell Rep 3:1457–1464PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Cork SM, Kaur B, Devi NS, Cooper L, Saltz JH et al (2012) A proprotein convertase/MMP-14 proteolytic cascade releases a novel 40 kDa vasculostatin from tumor suppressor BAI1. Oncogene 31:5144–5152PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Krasnoperov V, Deyev IE, Serova OV, Xu C, Lu Y et al (2009) Dissociation of the subunits of the calcium-independent receptor of alpha-latrotoxin as a result of two-step proteolysis. Biochemistry 48:3230–3238PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Moriguchi T, Haraguchi K, Ueda N, Okada M, Furuya T et al (2004) DREG, a developmentally regulated G protein-coupled receptor containing two conserved proteolytic cleavage sites. Genes Cells 9:549–560PubMedCrossRefGoogle Scholar
  48. 48.
    Okajima D, Kudo G, Yokota H (2010) Brain-specific angiogenesis inhibitor 2 (BAI2) may be activated by proteolytic processing. J Recept Signal Transduct Res 30:143–153PubMedCrossRefGoogle Scholar
  49. 49.
    Thomas G (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol 3:753–766PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kaur B, Brat DJ, Devi NS, Van Meir EG (2005) Vasculostatin, a proteolytic fragment of brain angiogenesis inhibitor 1, is an antiangiogenic and antitumorigenic factor. Oncogene 24:3632–3642PubMedCrossRefGoogle Scholar
  51. 51.
    Nishimori H, Shiratsuchi T, Urano T, Kimura Y, Kiyono K et al (1997) A novel brain-specific p53-target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15:2145–2150PubMedCrossRefGoogle Scholar
  52. 52.
    Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Bohnekamp J, Schöneberg T (2011) Cell adhesion receptor GPR133 couples to Gs protein. J Biol Chem 286:41912–41916PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Prömel S, Frickenhaus M, Hughes S, Mestek L, Staunton D et al (2012) The GPS motif is a molecular switch for bimodal activities of adhesion class G protein-coupled receptors. Cell Rep 2:321–331PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kurbegovic A, Kim H, Xu H, Yu S, Cruanès J et al (2014) Novel functional complexity of polycystin-1 by GPS cleavage in vivo: role in polycystic kidney disease. Mol Cell Biol 34:3341–3353PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Volynski KE, Silva JP, Lelianova VG, Atiqur Rahman M, Hopkins C et al (2004) Latrophilin fragments behave as independent proteins that associate and signal on binding of LTX(N4C). EMBO J 23:4423–4433PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Heisenberg CP, Bellaiche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153:948–962PubMedCrossRefGoogle Scholar
  58. 58.
    Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  59. 59.
    Kishore A, Hall RA (2016) Versatile signaling activity of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  60. 60.
    Paavola KJ, Stephenson JR, Ritter SL, Alter SP, Hall RA (2011) The N terminus of the adhesion G protein-coupled receptor GPR56 controls receptor signaling activity. J Biol Chem 286:28914–28921PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Arac D, Aust G, Calebiro D, Engel FB, Formstone C et al (2012) Dissecting signaling and functions of adhesion G protein-coupled receptors. Ann N Y Acad Sci 1276:1–25PubMedCrossRefGoogle Scholar
  62. 62.
    Strutt D, Schnabel R, Fiedler F, Prömel S (2016) Adhesion GPCRs govern polarity of epithelia and cell migration. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  63. 63.
    Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A 112:6194–6199PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Demberg LM, Rothemund S, Schöneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747PubMedCrossRefGoogle Scholar
  65. 65.
    Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S et al (2016) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J 30(2):666–673PubMedCrossRefGoogle Scholar
  66. 66.
    Müller A, Winkler J, Fiedler F, Sastradihardja T, Binder C et al (2015) Oriented cell division in the C. elegans embryo is coordinated by G-protein signaling dependent on the adhesion GPCR LAT-1. PLoS Genet 11:e1005624PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Boyden SE, Desai A, Cruse G, Young ML, Bolan HC et al (2016) Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med 374:656–663PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hamann J, Hsiao C-C, Lee CS, Ravichandran KS, Lin H-H (2016) Adhesion GPCRs as modulators of immune cell function. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  69. 69.
    Gordon WR, Vardar-Ulu D, Histen G, Sanchez-Irizarry C, Aster JC et al (2007) Structural basis for autoinhibition of Notch. Nat Struct Mol Biol 14:295–300PubMedCrossRefGoogle Scholar
  70. 70.
    Kishore A, Purcell RH, Nassiri-Toosi Z, Hall RA (2016) Stalk-dependent and stalk-independent signaling by the adhesion G protein-coupled receptors GPR56 (ADGRG1) and BAI1 (ADGRB1). J Biol Chem 291:3385–3394PubMedCrossRefGoogle Scholar
  71. 71.
    Nijmeijer S, Wolf S, Ernst OP, de Graaf C (2016) 7TM domain structure of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  72. 72.
    Patra C, van Amerongen MJ, Ghosh S, Ricciardi F, Sajjad A et al (2013) Organ-specific function of adhesion G protein-coupled receptor GPR126 is domain-dependent. Proc Natl Acad Sci U S A 110:16898–16903PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Waller-Evans H, Prömel S, Langenhan T, Dixon J, Zahn D et al (2010) The orphan adhesion-GPCR GPR126 is required for embryonic development in the mouse. PLoS One 5, e14047PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Huang YS, Chiang NY, Hu CH, Hsiao CC, Cheng KF et al (2012) Activation of myeloid cell-specific adhesion class G protein-coupled receptor EMR2 via ligation-induced translocation and interaction of receptor subunits in lipid raft microdomains. Mol Cell Biol 32:1408–1420PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Silva JP, Lelianova V, Hopkins C, Volynski KE, Ushkaryov Y (2009) Functional cross-interaction of the fragments produced by the cleavage of distinct adhesion G-protein-coupled receptors. J Biol Chem 284:6495–6506PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Silva JP, Ushkaryov Y (2010) The Latrophilins, “split-personality” receptors. Adv Exp Med Biol 706:59–75PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Serova OV, Popova NV, Petrenko AG, Deyev IE (2010) Association of the subunits of the calcium-independent receptor of alpha-latrotoxin. Biochem Biophys Res Commun 402:658–662PubMedCrossRefGoogle Scholar
  78. 78.
    Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282PubMedGoogle Scholar
  79. 79.
    Davey MG, Luscher EF (1967) Actions of thrombin and other coagulant and proteolytic enzymes on blood platelets. Nature 216:857–858PubMedCrossRefGoogle Scholar
  80. 80.
    Hattori R, Hamilton KK, Fugate RD, McEver RP, Sims PJ (1989) Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem 264:7768–7771PubMedGoogle Scholar
  81. 81.
    Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR (2001) Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 413:74–78PubMedCrossRefGoogle Scholar
  82. 82.
    Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64:1057–1068PubMedCrossRefGoogle Scholar
  83. 83.
    Hammes SR, Coughlin SR (1999) Protease-activated receptor-1 can mediate responses to SFLLRN in thrombin-desensitized cells: evidence for a novel mechanism for preventing or terminating signaling by PAR1’s tethered ligand. Biochemistry 38:2486–2493PubMedCrossRefGoogle Scholar
  84. 84.
    Vu TK, Wheaton VI, Hung DT, Charo I, Coughlin SR (1991) Domains specifying thrombin-receptor interaction. Nature 353:674–677PubMedCrossRefGoogle Scholar
  85. 85.
    Coughlin SR (1999) How the protease thrombin talks to cells. Proc Natl Acad Sci U S A 96:11023–11027PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Coughlin SR (1998) Sol Sherry lecture in thrombosis: how thrombin ‘talks’ to cells: molecular mechanisms and roles in vivo. Arterioscler Thromb Vasc Biol 18:514–518PubMedCrossRefGoogle Scholar
  87. 87.
    Karpus ON, Veninga H, Hoek RM, Flierman D, van Buul JD et al (2013) Shear stress-dependent downregulation of the adhesion-G protein-coupled receptor CD97 on circulating leukocytes upon contact with its ligand CD55. J Immunol 190:3740–3748PubMedCrossRefGoogle Scholar
  88. 88.
    Langenhan T, Barr MM, Bruchas MR, Ewer J, Griffith LC et al (2015) Model organisms in G protein-coupled receptor research. Mol Pharmacol 88:596–603PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Monk KR, Hamann J, Langenhan T, Nijmeijer S, Schöneberg T et al (2015) Adhesion G protein-coupled receptors: from in vitro pharmacology to in vivo mechanisms. Mol Pharmacol 88:617–623PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hoxie JA, Ahuja M, Belmonte E, Pizarro S, Parton R et al (1993) Internalization and recycling of activated thrombin receptors. J Biol Chem 268:13756–13763PubMedGoogle Scholar
  91. 91.
    Trejo J, Hammes SR, Coughlin SR (1998) Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. Proc Natl Acad Sci U S A 95:13698–13702PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sahin U, Weskamp G, Kelly K, Zhou HM, Higashiyama S et al (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164:769–779PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137PubMedCrossRefGoogle Scholar
  94. 94.
    Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL et al (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733PubMedCrossRefGoogle Scholar
  95. 95.
    Kriegler M, Perez C, Defay K, Albert I, Lu SD (1988) A novel form of Tnf/cachectin is a cell-surface cyto-toxic transmembrane protein – ramifications for the complex physiology of Tnf. Cell 53:45–53PubMedCrossRefGoogle Scholar
  96. 96.
    Asai M, Hattori C, Szabó B, Sasagawa N, Maruyama K et al (2003) Putative function of ADAM9, ADAM10, and ADAM17 as APP-secretase. Biochem Biophys Res Commun 301:231–235PubMedCrossRefGoogle Scholar
  97. 97.
    Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U et al (2004) A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest 113:1456–1464PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6:487–498PubMedCrossRefGoogle Scholar
  99. 99.
    Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741PubMedCrossRefGoogle Scholar
  100. 100.
    Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R et al (1995) Signalling downstream of activated mammalian Notch. Nature 377:355–358PubMedCrossRefGoogle Scholar
  101. 101.
    Lanford PJ, Lan Y, Jiang RL, Lindsell C, Weinmaster G et al (1999) Notch signalling pathway mediates hair cell development in mammalian cochlea. Nat Genet 21:289–292PubMedCrossRefGoogle Scholar
  102. 102.
    Apelqvist A, Li H, Sommer L, Beatus P, Anderson DJ et al (1999) Notch signalling controls pancreatic cell differentiation. Nature 400:877–881PubMedCrossRefGoogle Scholar
  103. 103.
    van Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:959–963PubMedCrossRefGoogle Scholar
  104. 104.
    Washburn T, Schweighoffer E, Gridley T, Chang D, Fowlkes BJ et al (1997) Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 88:833–843PubMedCrossRefGoogle Scholar
  105. 105.
    Robey E, Chang D, Itano A, Cado D, Alexander H et al (1996) An activated form of notch influences the choice between CD4 and CD8 T cell lineages. Cell 87:483–492PubMedCrossRefGoogle Scholar
  106. 106.
    Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B et al (2005) ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J 24:742–752PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Uemura K, Kihara T, Kuzuya A, Okawa K, Nishimoto T et al (2006) Characterization of sequential N-cadherin cleavage by ADAM10 and PS1. Neurosci Lett 402:278–283PubMedCrossRefGoogle Scholar
  108. 108.
    Hattori M, Osterfield M, Flanagan JG (2000) Regulated cleavage of a contact-mediated axon repellent. Science 289:1360–1365PubMedCrossRefGoogle Scholar
  109. 109.
    Saftig P, Lichtenthaler SF (2015) The alpha secretase ADAM10: a metalloprotease with multiple functions in the brain. Prog Neurobiol 135:1–20PubMedCrossRefGoogle Scholar
  110. 110.
    Suzuki K, Hayashi Y, Nakahara S, Kumazaki H, Prox J et al (2012) Activity-dependent proteolytic cleavage of neuroligin-1. Neuron 76:410–422PubMedCrossRefGoogle Scholar
  111. 111.
    Bot N, Schweizer C, Ben Halima S, Fraering PC (2011) Processing of the synaptic cell adhesion molecule neurexin-3beta by Alzheimer disease alpha- and gamma-secretases. J Biol Chem 286:2762–2773PubMedCrossRefGoogle Scholar
  112. 112.
    Saura CA, Servian-Morilla E, Scholl FG (2011) Presenilin/gamma-secretase regulates neurexin processing at synapses. PLoS One 6, e19430PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264PubMedCrossRefGoogle Scholar
  114. 114.
    Fehon RG, Kooh PJ, Rebay I, Regan CL, Xu T et al (1990) Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61:523–534PubMedCrossRefGoogle Scholar
  115. 115.
    Rebay I, Fleming RJ, Fehon RG, Cherbas L, Cherbas P et al (1991) Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67:687–699PubMedCrossRefGoogle Scholar
  116. 116.
    Hamann J, Vogel B, van Schijndel GM, van Lier RA (1996) The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 184:1185–1189PubMedCrossRefGoogle Scholar
  117. 117.
    Boucard AA, Ko J, Südhof TC (2012) High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J Biol Chem 287:9399–9413PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    O’Sullivan ML, de Wit J, Savas JN, Comoletti D, Otto-Hitt S et al (2012) FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron 73:903–910PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Silva JP, Lelianova VG, Ermolyuk YS, Vysokov N, Hitchen PG et al (2011) Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci U S A 108:12113–12118PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689PubMedCrossRefGoogle Scholar
  121. 121.
    Heitzler P, Simpson P (1991) The choice of cell fate in the epidermis of Drosophila. Cell 64:1083–1092PubMedCrossRefGoogle Scholar
  122. 122.
    Cau E, Blader P (2009) Notch activity in the nervous system: to switch or not switch? Neural Dev 4:36PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90:281–291PubMedCrossRefGoogle Scholar
  124. 124.
    Logeat F, Bessia C, Brou C, LeBail O, Jarriault S et al (1998) The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc Natl Acad Sci U S A 95:8108–8112PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Obermann H, Samalecos A, Osterhoff C, Schroder B, Heller R et al (2003) HE6, a two-subunit heptahelical receptor associated with apical membranes of efferent and epididymal duct epithelia. Mol Reprod Dev 64:13–26PubMedCrossRefGoogle Scholar
  126. 126.
    Brou C, Logeat F, Gupta N, Bessia C, LeBail O et al (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5:207–216PubMedCrossRefGoogle Scholar
  127. 127.
    Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X et al (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 5:197–206PubMedCrossRefGoogle Scholar
  128. 128.
    Parks AL, Klueg KM, Stout JR, Muskavitch MA (2000) Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127:1373–1385PubMedGoogle Scholar
  129. 129.
    Stephenson NL, Avis JM (2012) Direct observation of proteolytic cleavage at the S2 site upon forced unfolding of the Notch negative regulatory region. Proc Natl Acad Sci U S A 109:E2757–E2765PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Kidd S, Lieber T (2002) Furin cleavage is not a requirement for Drosophila Notch function. Mech Dev 115:41–51PubMedCrossRefGoogle Scholar
  131. 131.
    Okochi M, Steiner H, Fukumori A, Tanii H, Tomita T et al (2002) Presenilins mediate a dual intramembranous gamma-secretase cleavage of Notch-1. EMBO J 21:5408–5416PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Struhl G, Adachi A (2000) Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol Cell 6:625–636PubMedCrossRefGoogle Scholar
  133. 133.
    Kidd S, Lieber T, Young MW (1998) Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev 12:3728–3740PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Lecourtois M, Schweisguth F (1998) Indirect evidence for delta-dependent intracellular processing of notch in Drosophila embryos. Curr Biol 8:771–774PubMedCrossRefGoogle Scholar
  135. 135.
    Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393:382–386PubMedCrossRefGoogle Scholar
  136. 136.
    Struhl G, Adachi A (1998) Nuclear access and action of notch in vivo. Cell 93:649–660PubMedCrossRefGoogle Scholar
  137. 137.
    Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH et al (2005) Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123:291–304PubMedCrossRefGoogle Scholar
  138. 138.
    Mancia F, Shapiro L (2005) ADAM and Eph: how Ephrin-signaling cells become detached. Cell 123:185–187PubMedCrossRefGoogle Scholar
  139. 139.
    Flanagan JG, Vanderhaeghen P (1998) The ephrins and Eph receptors in neural development. Annu Rev Neurosci 21:309–345PubMedCrossRefGoogle Scholar
  140. 140.
    Atapattu L, Saha N, Llerena C, Vail ME, Scott AM et al (2012) Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. J Cell Sci 125:6084–6093PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kullander K, Klein R (2002) Mechanisms and functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol 3:475–486PubMedCrossRefGoogle Scholar
  142. 142.
    Garcia-Ceca J, Alfaro D, Montero-Herradón S, Tobajas E, Munoz JJ et al (2015) Eph/ephrins-mediated thymocyte-thymic epithelial cell interactions control numerous processes of thymus biology. Front Immunol 6:333PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Perez White BE, Getsios S (2014) Eph receptor and ephrin function in breast, gut, and skin epithelia. Cell Adh Migr 8:327–338PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Wijeratne DT, Rodger J, Wood FM, Fear MW (2016) The role of Eph receptors and Ephrins in the skin. Int J Dermatol 55:3–10PubMedCrossRefGoogle Scholar
  145. 145.
    Salaita K, Nair PM, Petit RS, Neve RM, Das D et al (2010) Restriction of receptor movement alters cellular response: physical force sensing by EphA2. Science 327:1380–1385PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Janes PW, Wimmer-Kleikamp SH, Frangakis AS, Treble K, Griesshaber B et al (2009) Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10. PLoS Biol 7, e1000215PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T et al (2001) Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Cell 106:745–757PubMedCrossRefGoogle Scholar
  148. 148.
    Nievergall E, Lackmann M, Janes PW (2012) Eph-dependent cell-cell adhesion and segregation in development and cancer. Cell Mol Life Sci 69:1813–1842PubMedCrossRefGoogle Scholar
  149. 149.
    Atapattu L, Lackmann M, Janes PW (2014) The role of proteases in regulating Eph/ephrin signaling. Cell Adh Migr 8:294–307PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Hughes J, Ward CJ, Peral B, Aspinwall R, Clark K et al (1995) The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 10:151–160PubMedCrossRefGoogle Scholar
  151. 151.
    Igarashi P, Somlo S (2002) Genetics and pathogenesis of polycystic kidney disease. J Am Soc Nephrol 13:2384–2398Google Scholar
  152. 152.
    Milutinovic J, Fialkow PJ, Agodoa LY, Phillips LA, Rudd TG et al (1984) Autosomal dominant polycystic kidney disease: symptoms and clinical findings. Q J Med 53:511–522PubMedGoogle Scholar
  153. 153.
    Streets AJ, Newby LJ, O'Hare MJ, Bukanov NO, Ibraghimov-Beskrovnaya O et al (2003) Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion. J Am Soc Nephrol 14:1804–1815Google Scholar
  154. 154.
    Streets AJ, Wagner BE, Harris PC, Ward CJ, Ong AC (2009) Homophilic and heterophilic polycystin 1 interactions regulate E-cadherin recruitment and junction assembly in MDCK cells. J Cell Sci 122:1410–1417PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Ong AC, Harris PC (2015) A polycystin-centric view of cyst formation and disease: the polycystins revisited. Kidney Int 88:699–710PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Lu W, Peissel B, Babakhanlou H, Pavlova A, Geng L et al (1997) Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nat Genet 17:179–181PubMedCrossRefGoogle Scholar
  157. 157.
    Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N et al (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10:57–69PubMedCrossRefGoogle Scholar
  158. 158.
    Merrick D, Chapin H, Baggs JE, Yu Z, Somlo S et al (2012) The gamma-secretase cleavage product of polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism. Dev Cell 22:197–210PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Matthias Nieberler
    • 1
  • Robert J. Kittel
    • 1
  • Alexander G. Petrenko
    • 2
  • Hsi-Hsien Lin
    • 3
    • 4
    Email author
  • Tobias Langenhan
    • 1
    Email author
  1. 1.Department of NeurophysiologyInstitute of Physiology, University of WürzburgWürzburgGermany
  2. 2.Laboratory of Receptor Cell BiologyShemyakin-Ovchinnikov Institute of Bioorganic ChemistryMoscowRussia
  3. 3.Department of Microbiology and ImmunologyCollege of Medicine, Chang Gung UniversityTao-YuanTaiwan
  4. 4.Chang Gung Immunology Consortium and Department of Anatomic PathologyChang Gung Memorial Hospital-LinkouTao-YuanTaiwan

Personalised recommendations