Adhesion GPCRs as a Putative Class of Metabotropic Mechanosensors

  • Nicole ScholzEmail author
  • Kelly R. Monk
  • Robert J. Kittel
  • Tobias LangenhanEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 234)

Graphical Abstract

Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate ligands have been described in settings, which suggest that they function in a mechanosensory capacity. For details, see text


G protein-coupled receptors (GPCRs) constitute the most versatile superfamily of biosensors. This group of receptors is formed by hundreds of GPCRs, each of which is tuned to the perception of a specific set of stimuli a cell may encounter emanating from the outside world or from internal sources. Most GPCRs are receptive for chemical compounds such as peptides, proteins, lipids, nucleotides, sugars, and other organic compounds, and this capacity is utilized in several sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In contrast, GPCRs have only anecdotally been implicated in the perception of mechanical stimuli. Recent studies, however, show that the family of adhesion GPCRs (aGPCRs), which represents a large panel of over 30 homologs within the GPCR superfamily, displays molecular design and expression patterns that are compatible with receptivity toward mechanical cues (Fig. 1). Here, we review physiological and molecular principles of established mechanosensors, discuss their relevance for current research of the mechanosensory function of aGPCRs, and survey the current state of knowledge on aGPCRs as mechanosensing molecules.


Adhesion GPCR Mechanosensor Mechanosensation 



The writing of this manuscript was supported by grants from the Deutsche Forschungsgemeinschaft to R. J. K. and T. L. (Research Unit FOR 2149, Projects P1 [LA 2861/4-1] and P3 [LA 2861/5-1, KI 1460/2-1]; SFB 1047, Project A5; SFB-TR 166 Projects B4 and C3; LA 2861/7-1). K. R. M. acknowledges support from the NIH (R01 NS079445, R01 HD080601).


  1. 1.
    Hoffman BD, Grashoff C, Schwartz MA (2011) Dynamic molecular processes mediate cellular mechanotransduction. Nature 475:316–323. doi: 10.1038/nature10316 PubMedCrossRefGoogle Scholar
  2. 2.
    Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725. doi: 10.1021/jp963911x CrossRefGoogle Scholar
  3. 3.
    Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Guharay F, Sachs F (1985) Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J Physiol 363:119–134PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994) A large-conductance mechanosensitive channel in E coli encoded by mscL alone. Nature 368:265–268. doi: 10.1038/368265a0 PubMedCrossRefGoogle Scholar
  6. 6.
    Levina N, Tötemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737. doi: 10.1093/emboj/18.7.1730 PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13:432–442PubMedCrossRefGoogle Scholar
  8. 8.
    Ajouz B, Berrier C, Garrigues A, Besnard M, Ghazi A (1998) Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J Biol Chem 273:26670–26674PubMedCrossRefGoogle Scholar
  9. 9.
    Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654. doi: 10.1038/nature03896 PubMedCrossRefGoogle Scholar
  10. 10.
    Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P et al (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69. doi: 10.1038/nature15247 PubMedCrossRefGoogle Scholar
  11. 11.
    Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60. doi: 10.1126/science.1193270 PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS et al (2012) Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–181. doi: 10.1038/nature10812 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Gottlieb PA, Sachs F (2011) Piezo1: properties of a cation selective mechanical channel. Channels (Austin) 6:214–219. doi: 10.4161/chan.21050 CrossRefGoogle Scholar
  14. 14.
    Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Coste B, Murthy SE, Mathur J, Schmidt M, Mechioukhi Y, Delmas P et al (2015) Piezo1 ion channel pore properties are dictated by C-terminal region. Nat Commun 6:7223. doi: 10.1038/ncomms8223 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Faucherre A, Nargeot J, Mangoni ME, Jopling C (2013) Piezo2b regulates vertebrate light touch response. J Neurosci 33:17089–17094. doi: 10.1523/JNeurosci0522-13.2013 PubMedCrossRefGoogle Scholar
  17. 17.
    Faucherre A, Kissa K, Nargeot J, Mangoni ME, Jopling C (2014) Piezo1 plays a role in erythrocyte volume homeostasis. Haematologica 99:70–75. doi: 10.3324/haematol.2013.086090 PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Li J, Hou B, Tumova S, Muraki K, Bruns A, Ludlow MJ et al (2014) Piezo1 integration of vascular architecture with physiological force. Nature 515:279–282. doi: 10.1038/nature13701 PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ranade SS, Qiu Z, Woo SH, Hur SS (2014) Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A 111(28):10347–10352. doi: 10.1073/pnas.1409233111 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kim SE, Coste B, Chadha A, Cook B, Patapoutian A (2012) The role of Drosophila Piezo in mechanical nociception. Nature 483:209–212. doi: 10.1038/nature10801 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470. doi: 10.1038/361467a0 PubMedCrossRefGoogle Scholar
  22. 22.
    Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD et al (1994) Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467. doi: 10.1038/367463a0 PubMedCrossRefGoogle Scholar
  23. 23.
    Driscoll M, Chalfie M (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593. doi: 10.1038/349588a0 PubMedCrossRefGoogle Scholar
  24. 24.
    Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P (1993) Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett 318:95–99PubMedCrossRefGoogle Scholar
  25. 25.
    Kellenberger S, Schild L (2002) Epithelial sodium channel/degenerin family of ion channels: a variety of functions for a shared structure. Physiol Rev 82:735–767. doi: 10.1152/physrev.00007.2002 PubMedCrossRefGoogle Scholar
  26. 26.
    Askwith CC, Wemmie JA, Price MP, Rokhlina T, Welsh MJ (2004) Acid-sensing ion channel 2 (ASIC2) modulates ASIC1 H+-activated currents in hippocampal neurons. J Biol Chem 279:18296–18305. doi: 10.1074/jbc.M312145200 PubMedCrossRefGoogle Scholar
  27. 27.
    Baron A, Voilley N, Lazdunski M, Lingueglia E (2008) Acid sensing ion channels in dorsal spinal cord neurons. J Neurosci 28:1498–1508. doi: 10.1523/JNEUROSCI.4975-07.2008 PubMedCrossRefGoogle Scholar
  28. 28.
    Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ et al (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci U S A 99:2338–2343. doi: 10.1073/pnas.032678399 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82:358–370PubMedCrossRefGoogle Scholar
  30. 30.
    Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226. doi: 10.1002/cne.901630207 PubMedCrossRefGoogle Scholar
  31. 31.
    Chalfie M, Au M (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033PubMedCrossRefGoogle Scholar
  32. 32.
    Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415:1039–1042. doi: 10.1038/4151039a PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang S, Árnadóttir J, Keller C, Caldwell GA, Yao CA, Chalfie M (2004) MEC-2 is recruited to the putative mechanosensory complex in C. elegans touch receptor neurons through its stomatin-like domain. Curr Biol 14:1888–1896. doi: 10.1016/j.cub.2004.10.030 PubMedCrossRefGoogle Scholar
  34. 34.
    Chelur DS, Ernstrom GG, Goodman MB, Yao CA, Chen L, O’Hagan R et al (2002) The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420:669–673. doi: 10.1038/nature01205 PubMedCrossRefGoogle Scholar
  35. 35.
    Huang M, Chalfie M (1994) Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470. doi: 10.1038/367467a0 PubMedCrossRefGoogle Scholar
  36. 36.
    O’Hagan R, Chalfie M, Goodman MB (2004) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50. doi: 10.1038/nn1362 PubMedCrossRefGoogle Scholar
  37. 37.
    Getz GS, Reardon CA (2004) Paraoxonase, a cardioprotective enzyme: continuing issues. Curr Opin Lipidol 15:261PubMedCrossRefGoogle Scholar
  38. 38.
    Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A et al (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 103:17079–17086. doi: 10.1073/pnas.0607465103 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Barnes TM, Jin Y, Horvitz HR, Ruvkun G (1996) The Caenorhabditis elegans behavioral gene unc-24 encodes a novel bipartite protein similar to both erythrocyte band 7.2 (stomatin) and nonspecific lipid transfer protein. J Neurochem 67(1):46–57PubMedCrossRefGoogle Scholar
  40. 40.
    Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi: 10.1038/nature02196 PubMedCrossRefGoogle Scholar
  41. 41.
    Montell C (2005) The TRP superfamily of cation channels. Sci Signal 2005:re3. doi: 10.1126/stke.2722005re3 CrossRefGoogle Scholar
  42. 42.
    Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521. doi: 10.1038/nrn2149 PubMedCrossRefGoogle Scholar
  43. 43.
    Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717. doi: 10.1146/annurev.physiol.68.040204.101406 PubMedCrossRefGoogle Scholar
  44. 44.
    Schnitzler MMY, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K et al (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103. doi: 10.1038/emboj.2008.233 CrossRefGoogle Scholar
  45. 45.
    Quick K, Zhao J, Eijkelkamp N, Linley JE, Rugiero F, Cox JJ et al (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open Biol 2:120068. doi: 10.1098/rsob.120068 PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sexton JE, Desmonds T, Quick K, Taylor R, Abramowitz J, Forge A et al (2015) The contribution of TRPC1, TRPC3, TRPC5 and TRPC6 to touch and hearing. Neurosci Lett 610:36–42. doi: 10.1016/j.neulet.2015.10.052 PubMedCrossRefGoogle Scholar
  47. 47.
    Eberl DF, Hardy RW, Kernan MJ (2000) Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 20:5981–5988PubMedGoogle Scholar
  48. 48.
    Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234PubMedCrossRefGoogle Scholar
  49. 49.
    Sidi S, NompC TRP (2003) Channel required for vertebrate sensory hair cell mechanotransduction. Science 301:96–99. doi: 10.1126/science.1084370 PubMedCrossRefGoogle Scholar
  50. 50.
    Li W, Feng Z, Sternberg PW, Xu XZS (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature 440:684–687. doi: 10.1038/nature04538 PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Lee J, Moon S, Cha Y, Chung YD (2010) Drosophila TRPN(=NOMPC) channel localizes to the distal end of mechanosensory cilia. PLoS One 5(6), e11012PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Cheng LE, Song W, Looger LL, Jan LY, Jan YN (2010) The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67:373–380. doi: 10.1016/j.neuron.2010.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE et al (2013) Nature 493:221–225. doi: 10.1038/nature11685 PubMedCrossRefGoogle Scholar
  54. 54.
    Gong J, Wang Q, Wang Z (2013) NOMPC is likely a key component of Drosophila mechanotransduction channels. Eur J Neurosci 38:2057–2064. doi: 10.1111/ejn.12214 PubMedCrossRefGoogle Scholar
  55. 55.
    Liang X, Madrid J, Gärtner R, Verbavatz J-M, Schiklenk C, Wilsch-Bräuninger M et al (2013) A NOMPC-dependent membrane-microtubule connector is a candidate for the gating spring in fly mechanoreceptors. Curr Biol 23:755–763. doi: 10.1016/j.cub.2013.03.065 PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang W, Cheng LE, Kittelmann M, Li J, Petkovic M, Cheng T et al (2015) Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162:1391–1403. doi: 10.1016/j.cell.2015.08.024 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Göpfert MC, Albert JT, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999–1000. doi: 10.1038/nn1735 PubMedCrossRefGoogle Scholar
  58. 58.
    Lehnert BP, Baker AE, Gaudry Q, Chiang A-S, Wilson RI (2013) Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 77:115–128. doi: 10.1016/j.neuron.2012.11.030 PubMedCrossRefGoogle Scholar
  59. 59.
    Scholz N, Gehring J, Guan C, Ljaschenko D, Fischer R, Lakshmanan V et al (2015) The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep. doi: 10.1016/j.celrep.2015.04.008 PubMedGoogle Scholar
  60. 60.
    Tobin DM, Madsen DM, Kahn-Kirby A, Peckol EL (2002) Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron 35(2):307–318PubMedCrossRefGoogle Scholar
  61. 61.
    Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90(6):2227–2231PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269PubMedGoogle Scholar
  63. 63.
    Kim J, Chung YD, Park D-Y, Choi S, Shin DW, Soh H et al (2003) A TRPV family ion channel required for hearing in Drosophila. Nature 424:81–84. doi: 10.1038/nature01733 PubMedCrossRefGoogle Scholar
  64. 64.
    Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA et al (2004) Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 24:9059–9066. doi: 10.1523/JNeurosci.1645-04.2004 PubMedCrossRefGoogle Scholar
  65. 65.
    Hanaoka K, Qian F, Boletta A, Bhunia AK, Piontek K, Tsiokas L et al (2000) Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature 408:990–994. doi: 10.1038/35050128 PubMedCrossRefGoogle Scholar
  66. 66.
    Yu Y, Ulbrich MH, Li M-H, Buraei Z, Chen X-Z, Ong ACM et al (2009) Structural and molecular basis of the assembly of the TRPP2/PKD1 complex. Proc Natl Acad Sci U S A 106:11558–11563. doi: 10.1073/pnas.0903684106 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X et al (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137. doi: 10.1038/ng1076 PubMedCrossRefGoogle Scholar
  68. 68.
    Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171. doi: 10.1161/CIRCULATIONAHA.107.710111 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ et al (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signaling cascades. Circ Res 104:860–869. doi: 10.1161/CIRCRESAHA.108.192765 PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Sharif-Naeini R, Folgering JHA, Bichet D, Duprat F, Lauritzen I, Arhatte M et al (2009) Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:587–596. doi: 10.1016/j.cell.2009.08.045 PubMedCrossRefGoogle Scholar
  71. 71.
    Wilson PD (2004) Polycystic kidney disease: new understanding in the pathogenesis. Int J Biochem Cell Biol 36:1868–1873. doi: 10.1016/j.biocel.2004.03.012 PubMedCrossRefGoogle Scholar
  72. 72.
    Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337. doi: 10.1146/ PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Nieberler M, Kittel RJ, Petrenko AG, Lin H-H, Langenhan T (2016) Control of adhesion GPCR function through proteolytic processing. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  74. 74.
    Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79PubMedCrossRefGoogle Scholar
  75. 75.
    Köttgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M et al (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447. doi: 10.1083/jcb.200805124 PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Brohawn SG (2015) How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann N Y Acad Sci 1352:20–32. doi: 10.1111/nyas.12874 PubMedCrossRefGoogle Scholar
  77. 77.
    Noël J, Sandoz G, Lesage F (2014) Molecular regulations governing TREK and TRAAK channel functions. Channels (Austin) 5:402–409. doi: 10.4161/chan.5.5.16469 CrossRefGoogle Scholar
  78. 78.
    Brohawn SG, Su Z, MacKinnon R (2014) Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. Proc Natl Acad Sci U S A 111:3614–3619. doi: 10.1073/pnas.1320768111 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Enyedi P, Czirják G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605. doi: 10.1152/physrev.00029.2009 Google Scholar
  80. 80.
    Alloui A, Zimmermann K, Mamet J, Duprat F, Noël J, Chemin J et al (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25:2368–2376. doi: 10.1038/sj.emboj.7601116 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M et al (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695. doi: 10.1038/sj.emboj.7600234 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Peyronnet R, Sharif-Naeini R, Folgering J, Arhatte M (2012) Mechanoprotection by polycystins against apoptosis is mediated through the opening of stretch-activated K2P channels. Cell Rep 1:241–250PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Sanders KM, Don KS (2006) Two‐pore‐domain potassium channels in smooth muscles: new components of myogenic regulation. J Physiol 570:37–43. doi: 10.1113/jphysiol.2005.098897 PubMedCrossRefGoogle Scholar
  84. 84.
    Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S et al (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30:277–284. doi: 10.1038/ng842 PubMedCrossRefGoogle Scholar
  85. 85.
    Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K et al (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79:504–515. doi: 10.1016/j.neuron.2013.06.019 PubMedCrossRefGoogle Scholar
  86. 86.
    Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA et al (2015) TMC1 and TMC2 localize at the site of mechanotransduction in mammalian inner ear hair cell stereocilia. Cell Rep 12:1606–1617. doi: 10.1016/j.celrep.2015.07.058 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Keresztes G, Mutai H, Heller S (2003) TMC and EVER genes belong to a larger novel family, the TMC gene family encoding transmembrane proteins. BMC Genomics 4:24. doi: 10.1186/1471-2164-4-24 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Labay V, Weichert RM, Makishima T, Griffith AJ (2010) Topology of transmembrane channel-like gene 1 protein. Biochemistry 49:8592–8598. doi: 10.1021/bi1004377 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chatzigeorgiou M, Bang S, Hwang SW, Schafer WR (2013) tmc-1 encodes a sodium-sensitive channel required for salt chemosensation in C. elegans. Nature 494:95–99. doi: 10.1038/nature11845 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Kawashima Y, Géléoc GSG, Kurima K, Labay V, Lelli A, Asai Y et al (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121:4796–4809. doi: 10.1172/JCI60405 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Vreugde S, Erven A, Kros CJ, Marcotti W, Fuchs H, Kurima K et al (2002) Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat Genet 30:257–258. doi: 10.1038/ng848 PubMedCrossRefGoogle Scholar
  92. 92.
    Beurg M, Kim KX, Fettiplace R (2014) Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144:55–69. doi: 10.1038/ng848 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21:7013–7025PubMedGoogle Scholar
  94. 94.
    Marcotti W, Van Netten SM (2005) The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J Physiol 567:505–521PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kazmierczak P, Sakaguchi H, Tokita J (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91. AbstractGoogle Scholar
  96. 96.
    Sakaguchi H, Tokita J, Müller U, Kachar B (2009) Tip links in hair cells: molecular composition and role in hearing loss. Curr Opin Otolaryngol Head Neck Surg 17:388. doi: 10.1097/MOO.0b013e3283303472 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H et al (2014) Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 111:12907–12912. doi: 10.1073/pnas.1402152111 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Beurg M, Xiong W, Zhao B, Müller U (2015) Subunit determination of the conductance of hair-cell mechanotransducer channels. 2015. Proc Natl Acad Sci U S A 112(5):1589–1594. doi: 10.1073/pnas.1420906112 PubMedCrossRefGoogle Scholar
  99. 99.
    Hynes R (1987) Integrins: a family of cell surface receptors. Cell 48:549–554. doi: 10.1016/0092-8674(87)90233-9 PubMedCrossRefGoogle Scholar
  100. 100.
    Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687PubMedCrossRefGoogle Scholar
  101. 101.
    Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol Chem 275:21785–21788. doi: 10.1074/jbc.R000003200 PubMedCrossRefGoogle Scholar
  102. 102.
    Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300. doi: 10.1038/nrm2871 PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3(3):a004994PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472. doi: 10.1038/35074532, AbstractPubMedCrossRefGoogle Scholar
  105. 105.
    Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. J Cell Biol 159(4):695–705PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wang N, Butler J, Ingber D (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127. doi: 10.1126/science.7684161 PubMedCrossRefGoogle Scholar
  107. 107.
    Choquet D, Felsenfeld DP, Sheetz MP (1997) Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88(1):39–48PubMedCrossRefGoogle Scholar
  108. 108.
    Meyer CJ, Alenghat FJ, Rim P, Fong JH-J, Fabry B, Ingber DE (2000) Mechanical control of cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2:666–668. doi: 10.1038/35023621, AbstractPubMedCrossRefGoogle Scholar
  109. 109.
    Chen J, Fabry B, Schiffrin EL, Wang N (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am J Physiol Cell Physiol 280:C1475–C1484PubMedGoogle Scholar
  110. 110.
    Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T, Narumiya S et al (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and rock-independent mechanism. J Cell Biol 153:1175–1186. doi: 10.1083/jcb.141.2.539 PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Lo CM, Wang HB, Dembo M, Wang Y (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79(1):144–152PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276(5317):1425–1428PubMedCrossRefGoogle Scholar
  113. 113.
    Dike LE, Chen CS, Mrksich M, Tien J, Whitesides GM, Ingber DE (1999) Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropatterned substrates. Dev Biol 35:441–448Google Scholar
  114. 114.
    Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E et al (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10):1195–1204PubMedCrossRefGoogle Scholar
  115. 115.
    McHugh BJ, Buttery R, Lad Y, Banks S (2010) Integrin activation by Fam38A uses a novel mechanism of R-Ras targeting to the endoplasmic. J Cell Sci 123(1):51–61. doi: 10.1242/jcs.056424 PubMedCrossRefGoogle Scholar
  116. 116.
    Nose A, Tsuji K, Takeichi M (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155PubMedCrossRefGoogle Scholar
  117. 117.
    Shapiro L, Weis WI (2009) Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1:a003053. doi: 10.1101/cshperspect.a003053 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Prakasam AK, Maruthamuthu V, Leckband DE (2006) Similarities between heterophilic and homophilic cadherin adhesion. Proc Natl Acad Sci U S A 103:15434–15439. doi: 10.1073/pnas.0606701103 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Leckband D, Prakasam A (2006) Mechanism and dynamics of cadherin adhesion. Annu Rev Biomed Eng 8:259–287. doi: 10.1146/annurev.bioeng.8.061505.095753 PubMedCrossRefGoogle Scholar
  120. 120.
    Shi Q, Maruthamuthu V, Li F, Leckband D (2010) Allosteric cross talk between cadherin extracellular domains. Biophys J 99:95–104. doi: 10.1016/j.bpj.2010.03.062 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Desai R, Sarpal R, Ishiyama N, Pellikka M, Ikura M, Tepass U (2013) Monomeric α-catenin links cadherin to the actin cytoskeleton. Nature 15:261–273. doi: 10.1038/ncb2685 Google Scholar
  122. 122.
    le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D et al (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115. doi: 10.1083/jcb.201001149 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nature 12:533–542. doi: 10.1038/ncb2055 Google Scholar
  124. 124.
    Yonemura S (2011) A mechanism of mechanotransduction at the cell-cell interface: emergence of α-catenin as the center of a force-balancing mechanism for morphogenesis in multicellular organisms. Bioessays 33:732–736. doi: 10.1002/bies.201100064 PubMedCrossRefGoogle Scholar
  125. 125.
    Leckband DE, de Rooij J (2014) Cadherin adhesion and mechanotransduction. Annu Rev Cell Dev Biol 30:291–315. doi: 10.1146/annurev-cellbio-100913-013212 PubMedCrossRefGoogle Scholar
  126. 126.
    Saez A, Buguin A, Silberzan P, Ladoux B (2005) Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys J 89:L52–L54. doi: 10.1529/biophysj.105.071217 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Liu Q-S, Zhang J, Liu M, Dong W-G (2010) Lentiviral-mediated miRNA against liver-intestine cadherin suppresses tumor growth and invasiveness of human gastric cancer. Cancer Sci 101:1807–1812. doi: 10.1111/j.1349-7006.2010.01600.x PubMedCrossRefGoogle Scholar
  128. 128.
    Barry AK, Wang N, Leckband DE (2015) Local VE-cadherin mechanotransduction triggers long-ranged remodeling of endothelial monolayers. J Cell Sci 128:1341–1351. doi: 10.1242/jcs.159954 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Roh-Johnson M, Shemer G, Higgins CD, McClellan JH, Werts AD, Tulu US et al (2012) Triggering a cell shape change by exploiting preexisting actomyosin contractions. Science 335:1232–1235. doi: 10.1126/science.1217869 PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Levayer R, Lecuit T (2013) Oscillation and polarity of E-cadherin asymmetries control actomyosin flow patterns during morphogenesis. Dev Cell 26:162–175. doi: 10.1016/j.devcel.2013.06.020 PubMedCrossRefGoogle Scholar
  131. 131.
    Tabdili H, Langer M, Shi Q, Poh Y-C, Wang N, Leckband D (2012) Cadherin-dependent mechanotransduction depends on ligand identity but not affinity. J Cell Sci 125:4362–4371. doi: 10.1242/jcs.105775 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Ladoux B, Anon E, Lambert M, Rabodzey A, Hersen P, Buguin A et al (2010) Strength dependence of cadherin-mediated adhesions. Biophys J 98:534–542. doi: 10.1016/j.bpj.2009.10.044 PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Dufour S, Mège R-M, Thiery JP (2014) α-Catenin, vinculin, and F-actin in strengthening E-cadherin cell–cell adhesions and mechanosensing. Cell Adh Migr 7:345–350. doi: 10.4161/cam.25139 CrossRefGoogle Scholar
  134. 134.
    Thomas WA, Boscher C, Chu Y-S, Cuvelier D, Martinez-Rico C, Seddiki R et al (2013) α-Catenin and vinculin cooperate to promote high E-cadherin-based adhesion strength. J Biol Chem 288:4957–4969. doi: 10.1074/jbc.M112.403774 PubMedCrossRefGoogle Scholar
  135. 135.
    Lecuit T, Lenne P-F, Munro E (2010) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157–184. doi: 10.1146/annurev-cellbio-100109-104027 CrossRefGoogle Scholar
  136. 136.
    Maître J-L, Heisenberg C-P (2013) Three functions of cadherins in cell adhesion. Curr Biol 23:R626–R633. doi: 10.1016/j.cub.2013.06.019 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Andreeva AV, Han J, Kutuzov MA, Profirovic J, Tkachuk VA, Voyno-Yasenetskaya TA (2010) T-cadherin modulates endothelial barrier function. J Cell Physiol 223:94–102. doi: 10.1002/jcp.22014 PubMedGoogle Scholar
  138. 138.
    Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20. doi: 10.1016/j.jaci.2009.05.038, quiz 21–2PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634. doi: 10.1038/nrm1699 PubMedCrossRefGoogle Scholar
  140. 140.
    Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18:1723–1729. doi: 10.1093/emboj/18.7.1723 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Schnitzler MY, Storch U, Gudermann T (2011) AT1 receptors as mechanosensors. Curr Opin Pharmacol 11:112–116CrossRefGoogle Scholar
  142. 142.
    Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T et al (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6:499–506. doi: 10.1038/ncb1137 PubMedCrossRefGoogle Scholar
  143. 143.
    Jarajapu YPR, Knot HJ (2002) Role of phospholipase C in development of myogenic tone in rat posterior cerebral arteries. Am J Physiol Heart Circ Physiol 283:H2234–H2238. doi: 10.1152/ajpheart.00624.2002 PubMedCrossRefGoogle Scholar
  144. 144.
    Osol G, Laher I, Kelley M (1993) Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries. Am J Physiol Heart Circ Physiol 265:H415–H420Google Scholar
  145. 145.
    Farrens DL, Altenbach C, Yang K, Hubbell WL (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274(5288):768–770PubMedCrossRefGoogle Scholar
  146. 146.
    Karnik S, Gogonea C, Patil S, Saad Y, Takezako T (2003) Activation of G-protein-coupled receptors: a common molecular mechanism. Trends Endocrinol Metab 14:431–437. doi: 10.1016/j.tem.2003.09.007 PubMedCrossRefGoogle Scholar
  147. 147.
    Yasuda N, Miura S-I, Akazawa H, Tanaka T, Qin Y, Kiya Y et al (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9:179–186. doi: 10.1038/sj.embor.7401157 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Storch U, Mederos y Schnitzler M, Gudermann T (2012) G protein-mediated stretch reception. Am J Physiol Heart Circ Physiol 302:H1241–H1249. doi: 10.1152/ajpheart.00818.2011 PubMedCrossRefGoogle Scholar
  149. 149.
    Chachisvilis M, Zhang Y-L, Frangos JA (2006) G protein-coupled receptors sense fluid shear stress in endothelial cells. Proc Natl Acad Sci U S A 103:15463–15468. doi: 10.1073/pnas.0607224103 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Mannstadt M, Jüppner H, Gardella TJ (1999) Receptors for PTH and PTHrP: their biological importance and functional properties. Am J Physiol 277:F665–F675PubMedGoogle Scholar
  151. 151.
    Zhang Y-L, Frangos JA, Chachisvilis M (2009) Mechanical stimulus alters conformation of type 1 parathyroid hormone receptor in bone cells. Am J Physiol Cell Physiol 296:C1391–C1399. doi: 10.1152/ajpcell.00549.2008 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Abdul-Majeed S, Nauli SM (2011) Dopamine receptor type 5 in the primary cilia has dual chemo- and mechano-sensory roles. Hypertension 58:325–331PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Makino A, Prossnitz ER, Bunemann M, Wang JM, Yao WJ, Schmid-Schoenbein GW (2006) G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am J Physiol Cell Physiol 290:C1633–C1639. doi: 10.1152/ajpcell.00576.2005 PubMedCrossRefGoogle Scholar
  154. 154.
    Langenhan T, Aust G, Hamann J (2013) Sticky signaling-adhesion class G protein-coupled receptors take the stage. Sci Signal 6:re3. doi: 10.1126/scisignal.2003825 PubMedCrossRefGoogle Scholar
  155. 155.
    Petersen SC, Luo R, Liebscher I, Giera S, Jeong S-J, Mogha A et al (2015) The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 85:755–769. doi: 10.1016/j.neuron.2014.12.057 PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    White JP, Wrann CD, Rao RR, Nair SK, Jedrychowski MP, You JS et al (2014) G protein-coupled receptor 56 regulates mechanical overload-induced muscle hypertrophy. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1417898111 Google Scholar
  157. 157.
    Liebscher I, Schöneberg T (2016) Tethered agonism: a common activation mechanism of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  158. 158.
    Kishore A, Hall RA (2016) Versatile signaling activity of adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  159. 159.
    Araç D, Sträter N, Seiradake E (2016) Understanding the structural basis of adhesion GPCR functions. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  160. 160.
    Lin H-H, Chang G-W, Davies JQ, Stacey M, Harris J, Gordon S (2004) Autocatalytic cleavage of the EMR2 receptor occurs at a conserved G protein-coupled receptor proteolytic site motif. J Biol Chem 279:31823–31832. doi: 10.1074/jbc.M402974200 PubMedCrossRefGoogle Scholar
  161. 161.
    Krasnoperov VG, Bittner MA, Beavis R, Kuang YN, Salnikow KV, Chepurny OG et al (1997) alpha-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. Neuron 18:925–937. doi: 10.1016/S0896-6273(00)80332-3 PubMedCrossRefGoogle Scholar
  162. 162.
    Araç D, Boucard AA, Bolliger MF, Nguyen J, Soltis SM, Südhof TC et al (2012) A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J 31:1364–1378. doi: 10.1038/emboj.2012.26 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Liebscher I, Schön J, Petersen SC, Fischer L, Auerbach N, Demberg LM et al (2014) A tethered agonist within the ectodomain activates the adhesion G protein-coupled receptors GPR126 and GPR133. Cell Rep 9:2018–2026. doi: 10.1016/j.celrep.2014.11.036 PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Stoveken HM, Hajduczok AG, Xu L, Tall GG (2015) Adhesion G protein-coupled receptors are activated by exposure of a cryptic tethered agonist. Proc Natl Acad Sci U S A. doi: 10.1073/pnas.1421785112 PubMedPubMedCentralGoogle Scholar
  165. 165.
    Demberg LM, Rothemund S, Schöneberg T, Liebscher I (2015) Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochem Biophys Res Commun 464:743–747. doi: 10.1016/j.bbrc.2015.07.020 PubMedCrossRefGoogle Scholar
  166. 166.
    Wilde C, Fischer L, Lede V, Kirchberger J, Rothemund S, Schöneberg T et al (2015) The constitutive activity of the adhesion GPCR GPR114/ADGRG5 is mediated by its tethered agonist. FASEB J. doi: 10.1096/fj.15-276220 PubMedCentralGoogle Scholar
  167. 167.
    Sigoillot SM, Monk KR, Piao X, Selimi F, Harty BL (2016) Adhesion G protein-coupled receptors in the nervous system: from synapse and dendrite morphogenesis to myelination. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  168. 168.
    Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C et al (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405. doi: 10.1126/science.1173474 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Monk KR, Oshima K, Jörs S, Heller S, Talbot WS (2011) Gpr126 is essential for peripheral nerve development and myelination in mammals. Development 138:2673–2680. doi: 10.1242/dev.062224 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Glenn TD, Talbot WS (2013) Analysis of Gpr126 function defines distinct mechanisms controlling the initiation and maturation of myelin. Development 140:3167–3175. doi: 10.1242/dev.093401 PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Mogha A, Benesh AE, Patra C, Engel FB, Schöneberg T, Liebscher I et al (2013) Gpr126 functions in Schwann cells to control differentiation and myelination via G-protein activation. J Neurosci 33:17976–17985. doi: 10.1523/JNEUROSCI.1809-13.2013 PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Feltri ML, Wrabetz L (2005) Laminins and their receptors in Schwann cells and hereditary neuropathies. J Peripher Nerv Syst 10:128–143. doi: 10.1111/j.1085-9489.2005.0010204.x PubMedCrossRefGoogle Scholar
  173. 173.
    Monk KR, Feltri ML, Taveggia C (2015) New insights on Schwann cell development. Glia 63:1376–1393. doi: 10.1002/glia.22852 PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Colognato H, Yurchenco PD (1999) The laminin alpha2 expressed by dystrophic dy(2J) mice is defective in its ability to form polymers. Curr Biol 9:1327–1330PubMedCrossRefGoogle Scholar
  175. 175.
    Yang D (2005) Coordinate control of axon defasciculation and myelination by laminin-2 and -8. J Cell Biol 168:655–666. doi: 10.1083/jcb.200411158 PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Xu H, Christmas P, Wu XR, Wewer UM, Engvall E (1994) Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci U S A 91:5572–5576PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Eberl DF (1999) Feeling the vibes: chordotonal mechanisms in insect hearing. Curr Opin Neurobiol 9:389–393. doi: 10.1016/S0959-4388(99)80058-0 PubMedCrossRefGoogle Scholar
  178. 178.
    White JP (2016) Control of skeletal muscle cell growth and size through adhesion GPCRs. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  179. 179.
    Budday S, Steinmann P, Kuhl E (2015) Physical biology of human brain development. Front Cell Neurosci 9:257. doi: 10.3389/fncel.2015.00257 PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Peng Y-M, van de Garde MDB, Cheng K-F, Baars PA, Remmerswaal EBM, van Lier RAW et al (2011) Specific expression of GPR56 by human cytotoxic lymphocytes. J Leukoc Biol 90:735–740. doi: 10.1189/jlb.0211092 PubMedCrossRefGoogle Scholar
  181. 181.
    Boyden SE, Desai MS, Cruse G, Young ML, Bolan HC, Scott LM et al (2016) Vibratory urticaria associated with a missense variant in ADGRE2. N Engl J Med 374(7):656–663. doi: 10.1056/NEJMoa1500611 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Bridges JP, Ludwig M-G, Mueller M, Kinzel B, Sato A, Xu Y et al (2013) Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size. Am J Respir Cell Mol Biol 49:348–357. doi: 10.1165/rcmb.2012-0439OC PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Yang MY, Hilton MB, Seaman S, Haines DC, Nagashima K, Burks CM et al (2013) Essential regulation of lung surfactant homeostasis by the orphan G protein-coupled receptor GPR116. Cell Rep 3:1457–1464. doi: 10.1016/j.celrep.2013.04.019 PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Fukuzawa T, Ishida J, Kato A, Ichinose T, Ariestanti DM, Takahashi T et al (2013) Lung surfactant levels are regulated by Ig-Hepta/GPR116 by monitoring surfactant protein D. PLoS One 8:e69451. doi: 10.1371/journal.pone.0069451 PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Ludwig M-G, Seuwen K, Bridges JP (2016) Adhesion GPCR function in pulmonary development and disease. In: Langenhan T, Schöneberg T (eds) Adhesion G protein-coupled receptors: molecular, physiological and pharmacological principles in health and disease. Springer, HeidelbergGoogle Scholar
  186. 186.
    McMillan DR, Kayes-Wandover KM, Richardson JA, White PC (2002) Very large G protein-coupled receptor-1, the largest known cell surface protein, is highly expressed in the developing central nervous system. J Biol Chem 277:785–792. doi: 10.1074/jbc.M108929200 PubMedCrossRefGoogle Scholar
  187. 187.
    McGee J, Goodyear RJ, McMillan DR, Stauffer EA, Holt JR, Locke KG et al (2006) The very large G-protein-coupled receptor VLGR1: a component of the ankle link complex required for the normal development of auditory hair bundles. J Neurosci 26:6543–6553. doi: 10.1523/JNEUROSCI.0693-06.2006 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of NeurophysiologyInstitute of Physiology, University of WürzburgWürzburgGermany
  2. 2.Department of Developmental BiologyHope Center for Neurologic Disorders, Washington University School of MedicineSt. LouisUSA

Personalised recommendations