Balance Layout Problems: Mathematical Modeling and Nonlinear Optimization

  • Yuriy Stoyan
  • Tatiana Romanova
  • Alexander Pankratov
  • Anna Kovalenko
  • Peter Stetsyuk
Part of the Springer Optimization and Its Applications book series (SOIA, volume 114)


The paper studies the optimal layout problem of 3D-objects (solid spheres, straight circular cylinders, spherocylinders, straight regular prisms, cuboids and tori) in a container (a cylindrical, a parabolic, or a truncated conical shape) with circular racks. The problem takes into account a given minimal and maximal allowable distances between objects, as well as, behaviour constraints of the mechanical system (equilibrium, moments of inertia and stability constraints). We call the problem the Balance Layout Problem (BLP) and develop a continuous nonlinear programming model (NLP-model) of the problem, using the phi-function technique. We also consider several BLP subproblems; provide appropriate mathematical models and solution algorithms, using nonlinear programming and nonsmooth optimization methods, illustrated with computational experiments.


Layout problems Behaviour constraints Distance constraints Phi-functions Quasi-phi-functions NLP-models Optimization algorithms 


  1. 1.
    Fasano, G., Pintér, J. (eds.): Modeling and Optimization in Space Engineering. Series: Springer Optimization and Its Applications. vol. 73, XII, 404 pp. Springer, New York (2013)Google Scholar
  2. 2.
    Fasano, G., Pintér, J. (eds.): Optimized Packings and Their Applications. Springer Optimization and Its Applications, vol. 105, 326 pp. Springer, Berlin (2015)Google Scholar
  3. 3.
    Che, C., Wang Y., Teng, H.: Test problems for quasi-satellite packing: Cylinders packing with behaviour constraints and all the optimal solutions known. Opt. (2008). Online
  4. 4.
    Lei, K.: Constrained layout optimization based on adaptive particle swarm optimizer. In: Zhihua, C., Zhenhua, L., Zhuo K., Yong, L. (eds.) Advances in Computation and Intelligence, vol. 1, pp. 434–442. Springer, Berlin (2009)CrossRefGoogle Scholar
  5. 5.
    Sun, Z., Teng, H.: Optimal layout design of a satellite module. Eng. Optim. 35 (5), 513–530 (2003)CrossRefGoogle Scholar
  6. 6.
    Jingfa, L., Gang, L.: Basin filling algorithm for the circular packing problem with equilibrium behavioural constraints. Science China Inf. Sci. 53 (5), 885–895 (2010)CrossRefGoogle Scholar
  7. 7.
    Oliveira, W.A., Moretti, A.C., Salles-Neto, L.L.: A heuristic for the nonidentical circle packing problem. Anais do CNMAC, 3, 626–632 (2010)Google Scholar
  8. 8.
    Xu, Y.-C., Xiao R.-B., Amos, M.: A novel algorithm for the layout optimization problem. In: Proceedings of 2007 IEEE Congress on Evolutionary Computation (CEC07), pp. 3938–3942. IEEE Press, New York (2007)Google Scholar
  9. 9.
    Chazelle, B., Edelsbrunner, H., Guibas, L.J.: The complexity of cutting complexes. Discret. Comput. Geom. 4 (2), 139–181 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kovalenko, A., Romanova, T., Stetsyuk, P.: Balance layout problem for 3D-objects: mathematical model and solution methods. Cybern. Syst. Anal. 51 (4), 556–565 (2015). doi: 10.1007/s10559-015-9746-5 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chernov, N., Stoyan, Y., Romanova T.: Mathematical model and efficient algorithms for object packing problem. Comput. Geom. Theory Appl. 43 (5), 533–553 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chernov, N., Stoyan, Y., Romanova, T., Pankratov, A.: phi-functions for 2D objects formed by line segments and circular arcs. Adv. Oper. Res. (2012). doi: 10.1155/2012/346358
  13. 13.
    Stoyan, Y., Pankratov, A., Romanova, T.: Quasi-phi-functions and optimal packing of ellipses. J. Global Optim. (2015). doi: 10.1007/s10898-015-0331-2 zbMATHGoogle Scholar
  14. 14.
    Wachter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106 (1), 25–57 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Shor, N.Z.: Nondifferentiable Optimization and Polynomial Problems, vol. 394. Kluwer Academic Publishers, Boston (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Shor, N.Z., Stetsyuk, P.I.: Modified r-algorithm to find the global minimum of polynomial functions. Cybern. Syst. Anal. 33 (4), 482–497 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Stetsyuk, P., Romanova, T., Scheithauer, G.: On the global minimum in a balanced circular packing problem. Optim. Lett. (2015). doi: 10.1007/s11590-015-0937-9 MathSciNetzbMATHGoogle Scholar
  18. 18.
    Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T., Pankratov, A.: Optimal clustering of a pair of irregular objects. J. Glob. Optim. 61 (3), 497–524 (2015)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yuriy Stoyan
    • 1
  • Tatiana Romanova
    • 1
  • Alexander Pankratov
    • 1
  • Anna Kovalenko
    • 1
  • Peter Stetsyuk
    • 2
  1. 1.Department of Mathematical Modeling and Optimal DesignInstitute for Mechanical Engineering Problems of the National Academy of Sciences of UkraineKharkovUkraine
  2. 2.Department of Methods of Nonsmooth OptimizationGlushkov Institute of Cybernetic of the National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations