Automatic System for Zebrafish Counting in Fish Facility Tanks

  • Francisco J. Silvério
  • Ana C. Certal
  • Carlos Mão de Ferro
  • Joana F. Monteiro
  • José Almeida Cruz
  • Ricardo Ribeiro
  • João Nuno Silva
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9730)

Abstract

In this project we propose a computer vision method, based on background subtraction, to estimate the number of zebrafish inside a tank. We addressed questions related to the best choice of parameters to run the algorithm, namely the threshold blob area for fish detection and the reference area from which a blob area in a threshed frame may be considered as one or multiple fish. Empirical results obtained after several tests show that the method can successfully estimate, within a margin of error, the number of zebrafish (fries or adults) inside fish tanks proving that adaptive background subtraction is extremely effective for blob isolation and fish counting.

Keywords

Computer vision Zebrafish counting Background subtraction Hu moments Image processing 

References

  1. 1.
    Boom, B.J., et al.: A research tool for long-term and continuous analysis of fish assemblage in coral-reefs using underwater camera footage. Ecol. Inf. 1–23 (2014)Google Scholar
  2. 2.
    Egan, R.J., et al.: Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav. Brain Res. 205(1), 38–44 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
  4. 4.
    Fabic, J.N., Turla, I.E., Capacillo, J.A., David, L.T., Naval, P.C.: Fish population estimation and species classification from underwater video sequences using blob counting and shape analysis, pp. 1–6. IEEE, March 2013Google Scholar
  5. 5.
    Foundation, P.: Raspberry Pi 2, Model B. https://www.adafruit.com/pdfs/raspberrypi2modelb.pdf
  6. 6.
  7. 7.
    Khanfar, H., et al.: Automatic fish counting in underwater video. In: 66th Gulf and Caribbean Fisheries Institute, pp. 1–9, November 2013Google Scholar
  8. 8.
    Hu, M.-K.: Visual pattern recognition by moment invariants. IEEE Trans. Inf. Theor. 8(2), 179–187 (1962)CrossRefMATHGoogle Scholar
  9. 9.
    Qader, H.A., Ramli, A.R., Al-haddad, S.: Fingerprint recognition using zernike moments (2006)Google Scholar
  10. 10.
    Martins, S., et al.: Toward an Integrated Zebrafish Health Management Program Supporting Cancer and Neuroscience Research (2016)Google Scholar
  11. 11.
    Spampinato, C., et al.: Detecting, tracking and counting fish in low quality unconstrained underwater videos. In: Proceedings of 3rd International Conference on Computer Vision Theory and Applications (VISAPP), pp. 514–519 (2008)Google Scholar
  12. 12.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer, London (2011)CrossRefMATHGoogle Scholar
  13. 13.
    Toh, Y.H., Ng, T.M., Liew, B.K.: Automated fish counting using image processing, pp. 1–5. IEEE, December 2009Google Scholar
  14. 14.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction, vol.2, pp. 28–31. IEEE (2004)Google Scholar
  15. 15.
    Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognit. Lett. 27(7), 773–780 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francisco J. Silvério
    • 1
  • Ana C. Certal
    • 2
  • Carlos Mão de Ferro
    • 2
  • Joana F. Monteiro
    • 2
  • José Almeida Cruz
    • 2
  • Ricardo Ribeiro
    • 2
  • João Nuno Silva
    • 1
  1. 1.INESC-ID Lisboa, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Champalimaud Centre for the UnknownLisbonPortugal

Personalised recommendations