Advertisement

Recognition of Handwritten Arabic Words with Dropout Applied in MDLSTM

  • Rania MaalejEmail author
  • Najiba Tagougui
  • Monji Kherallah
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9730)

Abstract

Offline handwriting recognition is the ability to decode an intelligible handwritten input from paper documents into digitized format readable by machines. This field remains an on-going research problem especially for Arabic Script due to its cursive appearance, the variety of writers and the diversity of styles. In this paper we focus on the Intelligent Words Recognition system based on MDLSTM, on which a dropout technique is applied during training stage. This technique prevents our system against overfitting and improves the recognition rate. To evaluate our system we use IFN/ENIT database.

Keywords

RNN LSTM MDLSTM Dropout Offline Arabic handwritten recognition 

Notes

Acknowledgment

We would like to express our great appreciation to Mr. Alex Graves for making RNNLIB library as an open source available on internet [22].

References

  1. 1.
    Graves, A.: Offline Arabic handwriting recognition with multidimensional recurrent neural networks. In: Märgner, V., El Abed, H. (eds.) Guide to OCR for Arabic Scripts, pp. 297–313. Springer, London (2012)CrossRefGoogle Scholar
  2. 2.
    Pechwitz, M., Maddouri, S.S., Märgner, V., Ellouze, N., Amiri, H.: IFN/ENIT-database of handwritten Arabic words. In: Proceedings of CIFED, vol. 2, pp. 127–136, October 2002Google Scholar
  3. 3.
    Pechwitz, M., Maergner, V.: HMM based approach for handwritten Arabic word recognition using the IFN/ENIT-database, p. 890. IEEE, August 2003Google Scholar
  4. 4.
    Dreuw, P., Doetsch, P., Plahl, C., Ney, H.: Hierarchical hybrid MLP/HMM or rather MLP features for a discriminatively trained gaussian HMM: a comparison for offline handwriting recognition. In: 2011 18th IEEE International Conference on Image Processing (ICIP), pp. 3541–3544. IEEE, September 2011Google Scholar
  5. 5.
    Graves, A., Liwicki, M., Bunke, H., Schmidhuber, J., Fernández, S.: Unconstrained on-line handwriting recognition with recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 577–584 (2008)Google Scholar
  6. 6.
    Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6645–6649. IEEE, May 2013Google Scholar
  7. 7.
    Kozielski, M., Doetsch, P., Ney, H.: Improvements in RWTH’s system for off-line handwriting recognition. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 935–939. IEEE, August 2013Google Scholar
  8. 8.
    Graves, A.: Supervised Sequence Labelling, pp. 5–13. Springer, Berlin (2012)zbMATHGoogle Scholar
  9. 9.
    Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv preprint arXiv:1207.0580
  10. 10.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Miao, Y., Metze, F.: Improving low-resource CD-DNN-HMM using dropout and multilingual DNN training (2013)Google Scholar
  12. 12.
    Zhang, S., Bao, Y., Zhou, P., Jiang, H., Dai, L.: Improving deep neural networks for LVCSR using dropout and shrinking structure. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6849–6853. IEEE, May 2014Google Scholar
  13. 13.
    Maalej, R.,Tagougui, N., Kherallah, M.: Online Arabic handwriting recognition with dropout applied in deep recurrent neural networks. In: 2016 12th IAPR International Workshop on Document Analysis Systems (DAS), pp. 418–421. IEEE, April 2016Google Scholar
  14. 14.
    Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376. ACM, June 2006Google Scholar
  15. 15.
    Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)CrossRefGoogle Scholar
  16. 16.
    Kessentini, Y., Paquet, T., Hamadou, A.B.: Off-line handwritten word recognition using multi-stream hidden Markov models. Pattern Recogn. Lett. 31(1), 60–70 (2010)CrossRefGoogle Scholar
  17. 17.
    AlKhateeb, J.H., Ren, J., Jiang, J., Al-Muhtaseb, H.: Offline handwritten Arabic cursive text recognition using hidden markov models and re-ranking. Pattern Recogn. Lett. 32(8), 1081–1088 (2011)CrossRefGoogle Scholar
  18. 18.
    Pechwitz, M., El Abed, H., Märgner, V.: Handwritten Arabic word recognition using the IFN/ENIT-database. In: Märgner, V., El Abed, H. (eds.) Guide to OCR for Arabic Scripts, pp. 169–213. Springer, London (2012)CrossRefGoogle Scholar
  19. 19.
    El Abed, H., Märgner, V.: ICDAR 2009-Arabic handwriting recognition competition. Int. J. Doc. Anal. Recogn. (IJDAR) 14(1), 3–13 (2011)CrossRefGoogle Scholar
  20. 20.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. In: Soviet physics Doklady, vol. 10, no. 8, pp. 707–710, February 1966Google Scholar
  21. 21.
    Elleuch, M., Tagougui, N., Kherallah, M.: Deep learning for feature extraction of Arabic handwritten script. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 371–382. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-23117-4_32 CrossRefGoogle Scholar
  22. 22.
    Graves, A.: Rnnlib: a recurrent neural network library for sequence learning problems (2008). http://sourceforge.net/projects/rnnl/

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rania Maalej
    • 1
    Email author
  • Najiba Tagougui
    • 2
    • 3
  • Monji Kherallah
    • 4
  1. 1.Research Group on Intelligent Machines, National School of Engineers of SfaxUniversity of SfaxSfaxTunisia
  2. 2.Higher Institute of Management of GabesGabesTunisia
  3. 3.Faculty of Computer Science and Information TechnologyAl Baha UniversityAl BahahKingdom of Saudi Arabia
  4. 4.Faculty of SciencesUniversity of SfaxSfaxTunisia

Personalised recommendations