A Lightweight Face Tracking System for Video Surveillance

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9730)

Abstract

This paper deals with the problem of multiple face tracking for video surveillance systems. Although a considerable number of object tracking approaches have been developed, the video surveillance scenario allows additional assumptions on the tracker’s operational environment. Based on these assumptions, the tracking system including a face detector and a tracking subsystem is presented. The tracking algorithm is based on computationally inexpensive Binary Robust Independent Elementary Features (BRIEF). The implemented tracking system was tested on two video sequences. The experiments showed a significant improvement of processing rate over a detector-based system along with a reasonable tracking quality.

Keywords

Object tracking Face tracking Computer vision Binary descriptors Video surveillance 

Notes

Acknowledgements

This work was partially financially supported by the Government of the Russian Federation, Grant 074-U01. The author expresses his sincere appreciation to Professor Georgy Kukharev, his scientific adviser; Yuri Matveev, Head of SIS Department; and Aleksandr Melnikov for their critical remarks and advice that significantly improved this paper.

References

  1. 1.
    Melnikov, A., Akhunzyanov, R., Kudashev, O., Luckyanets, E.: Audiovisual liveness detection. In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9280, pp. 643–652. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  2. 2.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. 38(4), 1–45 (2006)CrossRefGoogle Scholar
  3. 3.
    Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual tracking: a review. Neurocomputing 74(18), 3823–3831 (2011)CrossRefGoogle Scholar
  4. 4.
    Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014)CrossRefGoogle Scholar
  5. 5.
    Kristan, M., Matas, J., et al.: The visual object tracking VOT2015 challenge results. In: IEEE International Conference on Computer Vision Workshops, pp. 1–23 (2015)Google Scholar
  6. 6.
    Ta, D.N., Chen, W.C., Gelfand, N., Pulli, K.: SURFTrac: efficient tracking and continuous object recognition using local feature descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2937–2944. IEEE (2009)Google Scholar
  7. 7.
    Bilinski, P., Bremond, F., Kaaniche, M.B.: Multiple object tracking with occlusions using HOG descriptors and multi resolution images. In: 3rd International Conference on Crime Detection and Prevention (ICDP), pp. 1–6. IET (2009)Google Scholar
  8. 8.
    Minnehan, B., Spang, H., Savakis, A.E.: Robust and efficient tracker using dictionary of binary descriptors and locality constraints. In: Bebis, G., et al. (eds.) ISVC 2014, Part I. LNCS, vol. 8887, pp. 589–598. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Panti, B., Monteiro, P., Pereira, F., Ascenso, J.: Descriptor-based adaptive tracking-by-detection for visual sensor networks. In: IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2015)Google Scholar
  10. 10.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Ishii, I., Ichida, T., Gu, Q., Takaki, T.: 500-fps face tracking system. J. Real-Time Image Process. 8(4), 379–388 (2013)CrossRefGoogle Scholar
  12. 12.
    Pinho, R.R., Tavares, J.M.R.S.: Tracking features in image sequences with Kalman filtering, global optimization, Mahalanobis distance and a management model. Comput. Model. Eng. Sci. 46(1), 51–76 (2009)MATHGoogle Scholar
  13. 13.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 511–518. IEEE (2001)Google Scholar
  14. 14.
    Kukharev, G., Kamenskaya, E., Matveev, Y., Shchegoleva, N.: Methods of Facial Images Processing and Recognition in Biometrics (in Russian). Politechnika, Saint-Petersburg (2013)Google Scholar
  15. 15.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications, 1st edn. Prentice Hall, Upper Saddle River (1993)MATHGoogle Scholar
  16. 16.
    Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Szeliski, R.: Computer Vision: Algorithms and Applications. Texts in Computer Science, 1st edn. Springer, London (2011)CrossRefMATHGoogle Scholar
  18. 18.
    OpenCV (open source computer vision library). http://opencv.org/
  19. 19.
  20. 20.
    Li, L., Nawaz, T., Ferryman, J.: PETS 2015: datasets and challenge. In: 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2015)Google Scholar
  21. 21.
    Collins, R., Zhou, X., Teh, S.K.: An open source tracking testbed and evaluation web site. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS 2005), vol. 2, p. 35 (2005)Google Scholar
  22. 22.
    Maggio, E., Piccardo, E., Regazzoni, C., Cavallaro, A.: Particle PHD filtering for multi-target visual tracking. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. 1101–1104. IEEE (2007)Google Scholar
  23. 23.
    Doermann, D., Mihalcik, D.: Tools and techniques for video performance evaluation. In: 15th International Conference on Pattern Recognition, 2000. Proceedings, vol. 4, pp. 167–170 (2000)Google Scholar
  24. 24.
    Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008, 1–10 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations