Advertisement

Bio-inspired Boosting for Moving Objects Segmentation

  • Isabel MartinsEmail author
  • Pedro Carvalho
  • Luís Corte-Real
  • José Luis Alba-Castro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9730)

Abstract

Developing robust and universal methods for unsupervised segmentation of moving objects in video sequences has proved to be a hard and challenging task. State-of-the-art methods show good performance in a wide range of situations, but systematically fail when facing more challenging scenarios. Lately, a number of image processing modules inspired in biological models of the human visual system have been explored in different areas of application. This paper proposes a bio-inspired boosting method to address the problem of unsupervised segmentation of moving objects in video that shows the ability to overcome some of the limitations of widely used state-of-the-art methods. An exhaustive set of experiments was conducted and a detailed analysis of the results, using different metrics, revealed that this boosting is more significant when challenging scenarios are faced and state-of-the-art methods tend to fail.

Keywords

Bio-inspired motion detection Video segmentation 

Notes

Acknowledgements

Work supported by the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC) and research contract GRC2014/024 (Modalidade: Grupos de Referencia Competitiva 2014) and project "TEC4 Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020", financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).

References

  1. 1.
    Bouwmans, T.: Traditional and recent approaches in background modeling for foreground detection: an overview. Comput. Sci. Rev. 11, 31–66 (2014)CrossRefzbMATHGoogle Scholar
  2. 2.
    Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: Moving object detection in spatial domain using background removal techniques — state-of-art. Recent Patents Comput. Sci. 1, 32–54 (2008)CrossRefGoogle Scholar
  3. 3.
    Wang, Y., Jodoin, P.-M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: CDnet 2014: an expanded change detection benchmark dataset. In: Proceedings of IEEE Workshop on Change Detection (CDW-2014) at CVPRW-2014, pp. 387–394 (2014)Google Scholar
  4. 4.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  5. 5.
    Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Trans. Visual. Comput. Graph. 11, 13–24 (2005)CrossRefGoogle Scholar
  6. 6.
    Benoit, A., Caplier, A., Durette, B., Herault, J.: Using human visual system modeling for bio-inspired low level image processing. Comput. Vis. Image Underst. 114(7), 758–773 (2010)CrossRefGoogle Scholar
  7. 7.
    Zivkovic, Z., van der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)CrossRefGoogle Scholar
  8. 8.
    Sklansky, J.: Finding the convex hull of a simple polygon. Pattern Recogn. Lett. 1, 79–83 (1982)CrossRefzbMATHGoogle Scholar
  9. 9.
    ChangeDetection.NET (CDNET). http://www.changedetection.net
  10. 10.
    Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: a new change detection benchmark dataset. In: Proceedings of IEEE Workshop on Change Detection (CDW-2012), at CVPRW-2012 (2012)Google Scholar
  11. 11.
    Wang, B., Dudek, P.: A fast self-tuning background subtraction algorithm. In: Proceedings of IEEE Workshop on Change Detection (CDW-2014), at CVPRW-2014 (2014)Google Scholar
  12. 12.
    Gregorio, M.D., Giordano, M.: Change detection with weightless neural networks. In: Proceedings of IEEE Workshop on Change Detection (CDW-2014), at CVPRW-2014 (2014)Google Scholar
  13. 13.
    Sedky, M., Moniri, M., Chibelushi, C.C.: Spectral-360: a physical-based technique for change detection. In: Proceedings of IEEE Workshop on Change Detection (CDW-2014), at CVPRW-2014 (2014)Google Scholar
  14. 14.
    St-Charles, P.-L., Bilodeau, G.-A., Bergevin, R.: Flexible background subtraction with self-balanced local sensitivity. In: Proceedings of IEEE Workshop on Change Detection (CDW-2014), at CVPRW-2014 (2014)Google Scholar
  15. 15.
    Wang, R., Bunyak, F., Seetharaman, G., Palaniappan, K.: Static and moving object detection using flux tensor with split gaussian models. In: Proceedings of IEEE Workshop on Change Detection (CDW-2014), at CVPRW-2014 (2014)Google Scholar
  16. 16.
    Cardoso, J.S., Corte-Real, L.: Toward a generic evaluation of image segmentation. IEEE Trans. Image Process. 14(11), 1773–1782 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Isabel Martins
    • 1
    • 2
    Email author
  • Pedro Carvalho
    • 2
    • 3
  • Luís Corte-Real
    • 3
    • 4
  • José Luis Alba-Castro
    • 1
  1. 1.University of VigoVigoSpain
  2. 2.School of EngineeringPolytechnic Institute of PortoPortoPortugal
  3. 3.INESC TECPortoPortugal
  4. 4.Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations