Semantic Matching of Engineering Data Structures

  • Olga KovalenkoEmail author
  • Jérôme Euzenat


An important element of implementing a data integration solution in multi-disciplinary engineering settings, consists in identifying and defining relations between the different engineering data models and data sets that need to be integrated. The ontology matching field investigates methods and tools for discovering relations between semantic data sources and representing them. In this chapter, we look at ontology matching issues in the context of integrating engineering knowledge. We first discuss what types of relations typically occur between engineering objects in multi-disciplinary engineering environments taking a use case in the power plant engineering domain as a running example. We then overview available technologies for mappings definition between ontologies, focusing on those currently most widely used in practice and briefly discuss their capabilities for mapping representation and potential processing. Finally, we illustrate how mappings in the sample project in power plant engineering domain can be generated from the definitions in the Expressive and Declarative Ontology Alignment Language (EDOAL).


Ontology matching Correspondence Alignment Mapping Ontology integration Data transformation Complex correspondences Ontology mapping languages Procedural and declarative languages EDOAL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Christian Doppler Forschungsgesellschaft, the Federal Ministry of Economy, Family and Youth, and the National Foundation for Research, Technology and Development in Austria.


  1. Akhtar, W., Kopeckỳ, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling Between the XML and RDF Worlds—and Avoiding the XSLT Pilgrimage. Springer (2008)Google Scholar
  2. Atencia, M., David, J., Euzenat, J.: Data interlinking through robust linkkey extraction. In: Proceeding 21st European Conference on Artificial Intelligence (ECAI), Praha (CZ), pp. 15–20 (2014)Google Scholar
  3. Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 1–12. ACM (2007)Google Scholar
  4. Biffl, S., Moser, T., Winkler, D.: Risk assessment in multi-disciplinary (software+) engineering projects. Int. J. Softw. Eng. Knowl. Eng. 21(02), 211–236 (2011)CrossRefGoogle Scholar
  5. Breslin, J.G., O’Sullivan, D., Passant, A., Vasiliu, L.: Semantic web computing in industry. Comput. Ind. 61(8), 729–741 (2010)CrossRefGoogle Scholar
  6. David, J., Euzenat, J., Scharffe, F., Trojahn Dos Santos, C.: The Alignment API 4.0. Semant. Web J. 2(1), 3–10 (2011)Google Scholar
  7. Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., Van de Walle, R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In: Proceedings of the 7th Workshop on Linked Data on the Web (LDOW2014), Seoul, Korea (2014)Google Scholar
  8. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (DE) (2013)CrossRefzbMATHGoogle Scholar
  9. Ghidini, C., Serafini, L., Tessaris, S.: On relating heterogeneous elements from different ontologies. In: Modeling and Using Context, pp. 234–247. Springer (2007)Google Scholar
  10. Huang, S.S., Green, T.J., Loo, B.T.: Datalog and emerging applications: an interactive tutorial. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data, pp. 1213–1216. ACM (2011)Google Scholar
  11. Legler, F., Naumann, F.: A classification of schema mappings and analysis of mapping tools. BTW, Citeseer 103, 449–464 (2007)Google Scholar
  12. Miles, A., Matthews, B., Wilson, M., Brickley, D.: SKOS core: simple knowledge organisation for the web. In: International Conference on Dublin Core and Metadata Applications, p. 3 (2005)Google Scholar
  13. Mordinyi, R., Winkler, D., Moser, T., Biffl, S., Sunindyo, W.D.: Engineering object change management process observation in distributed automation systems projects. In: Proceedings of the 18th EuroSPI Conference, Roskilde, Denmark (2011)Google Scholar
  14. Noy, N.F.: Semantic integration: a survey of ontology-based approaches. ACM SIGMOD Rec. 33(4), 65–70 (2004)CrossRefGoogle Scholar
  15. Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Exp. Syst. Appl. 42(2), 949–971 (2015)CrossRefGoogle Scholar
  16. Scharffe, F.: Correspondence patterns representation. Ph.D. thesis, University of Innsbruck (2009)Google Scholar
  17. Scharffe, F., de Bruijn, J., Foxvog, D.: Ontology mediation patterns library v2. Deliverable D4, 3 (2006)Google Scholar
  18. Scharffe, F., Zamazal, O., Fensel, D.: Ontology alignment design patterns. Knowl. Inf. Syst. 40(1), 1–28 (2014)CrossRefGoogle Scholar
  19. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  20. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Silk: a link discovery framework for the web of data. LDOW 538 (2009)Google Scholar
  21. Vyatkin, V.: Software engineering in industrial automation: state-of-the-art review. IEEE Trans. Ind. Inf. 9(3), 1234–1249 (2013)CrossRefGoogle Scholar
  22. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hübner, S.: Ontology-based integration of information—A survey of existing approaches. In: IJCAI-01 Workshop: Ontologies and Information Sharing, Citeseer, vol. 2001, pp. 108–117 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Software Technology and Interactive Systems, CDL-FlexVienna University of TechnologyViennaAustria
  2. 2.INRIA & Univ. Grenoble AlpesGrenobleFrance

Personalised recommendations