Leveraging Semantic Web Technologies for Consistency Management in Multi-viewpoint Systems Engineering

  • Simon Steyskal
  • Manuel Wimmer


Systems modeling is an important ingredient for engineering complex systems in potentially heterogeneous environments. One way to deal with the increasing complexity of systems is to offer several dedicated viewpoints on the system model for different stakeholders, thus providing means for system engineers to focus on particular aspects of the environment. This allows them to solve engineering tasks more efficiently, although keeping those multiple viewpoints consistent with each other (e.g., in dynamic multiuser scenarios) is not trivial. In the present chapter, we elaborate how Semantic Web technologies (SWT) may be utilized to deal with such challenges when models are represented as RDF graphs. In particular, we discuss current developments regarding a W3C Recommendation for describing structural constraints over RDF graphs called Shapes Constraint Language (SHACL) which we subsequently exploit for defining intermodel constraints to ensure consistency between different viewpoints represented as RDF graphs. Based on a running example, we illustrate how SHACL is used to define correspondences (i.e., mappings) between different RDF graphs and subsequently how those correspondences can be validated during modeling time.


Consistency management Multi-viewpoint systems engineering Shapes Constraint Language SHACL Constraint checking Ontology mapping Ontology integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work has been partially funded by the Vienna Business Agency (Austria) within the COSIMO project (grant number 967327), the Christian Doppler Forschungsgesellschaft, and the BMWFW, Austria.


  1. AutomationML Consortium: AutomationML Whitepaper Part 1—Architecture and general requirements (2014).
  2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)Google Scholar
  3. Barth, M., Drath, R., Fay, A., Zimmer, F., Eckert, K.: Evaluation of the openness of automation tools for interoperability in engineering tool chains. In: Proceedings of the Conference on Emerging Technologies Factory Automation (ETFA) (2012)Google Scholar
  4. Bézivin, J., Paige, R.F., Aßmann, U., Rumpe, B., Schmidt, D.C.: Manifesto—model engineering for complex systems (2014). CoRR abs/1409.6591Google Scholar
  5. Biffl, S., Schatten, A., Zoitl, A.: Integration of heterogeneous engineering environments for the automation systems lifecycle. In: Proceedings of the International Conference on Industrial Informatics (INDIN) (2009)Google Scholar
  6. Bill, R., Steyskal, S., Wimmer, M., Kappel, G.: On synergies between model transformations and semantic web technologies. In: Proceedings of the 8th Workshop on Multi-Paradigm Modeling co-located with the 17th International Conference on Model Driven Engineering Languages and Systems, MPMMODELS 2014, pp. 31–40. Valencia, Spain, 30 Sept 2014.
  7. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice. Morgan & Claypool (2012)Google Scholar
  8. Breslin, J.G., O’Sullivan, D., Passant, A., Vasiliu, L.: Semantic web computing in industry. Comput. Ind. 61(8), 729–741 (2010)CrossRefGoogle Scholar
  9. Cicchetti, A., Ruscio, D.D.: Decoupling web application concerns through weaving operations. Sci. Comput. Progr. 70(1), 62–86 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. Diskin, Z., Xiong, Y., Czarnecki, K.: Specifying overlaps of heterogeneous models for global consistency checking. In: MoDELS Workshops. LNCS, vol. 6627, pp. 165–179. Springer (2010)Google Scholar
  11. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model transformations: the asymmetric case. J. Object Technol. 10(6), 1–25 (2011a). doi: 10.5381/jot.2011.10.1.a6
  12. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From state- to delta-based bidirectional model transformations: The symmetric case. In: Model Driven Engineering Languages and Systems, 14th International Conference, MODELS 2011, Proceedings, pp. 304–318. Wellington, New Zealand, 16–21 Oct 2011 (2011b). doi: 10.1007/978-3-642-24485-8_22
  13. Diskin, Z., Gholizadeh, H., Wider, A., Czarnecki, K.: A three-dimensional taxonomy for bidirectional model synchronization. J. Syst. Softw. 111, 298–322 (2015)CrossRefGoogle Scholar
  14. Djuric, D., Gasevic, D., Devedzic, V., Damjanovic, V.: A UML Profile for OWL Ontologies. In: Proceedings of MDAFA. LNCS, vol. 3599, pp. 204–219. Springer (2004)Google Scholar
  15. Drath, R., Lüder, A., Peschke, J., Hundt, L.: AutomationML—the glue for seamless automation engineering. In: Proceedings of on the Conference on Emerging Technologies and Factory Automation (ETFA) (2008)Google Scholar
  16. Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change management in multi-viewpoint system using ASP. In: Workshops Proceedings of the International IEEE Enterprise Distributed Object Computing Conference (EDOCW), pp. 433–440. IEEE (2008)Google Scholar
  17. Eramo, R., Malavolta, I., Muccini, H., Pelliccione, P., Pierantonio, A.: A model-driven approach to automate the propagation of changes among architecture description languages. Softw. Syst. Model. 11(1), 29–53 (2012)CrossRefGoogle Scholar
  18. Feldmann, S., Kernschmidt, K., Vogel-Heuser, B.: Combining a SysML-based modeling approach and semantic technologies for analyzing change influences in manufacturing plant models. In: Proceedings of 47th CIRP Conference on Manufacturing Systems (CMS) (2014)Google Scholar
  19. Feldmann, S., Herzig, S.J.I., Kernschmidt, K., Wolfenstetter, T., Kammerl, D., Qamar, A., Lindemann, U., Krcmar, H., Paredis, C.J.J., Vogel-Heuser, B.: A comparison of inconsistency management approaches using a mechatronic manufacturing system design case study. In: Proceedings of CASE, pp. 158–165. IEEE (2015)Google Scholar
  20. Finkelstein, A., Gabbay, D.M., Hunter, A., Kramer, J., Nuseibeh, B.: Inconsistency handling in multi-perspective specifications. In: Proceedings of ESEC. LNCS, vol. 717, pp. 84–99. Springer (1993)Google Scholar
  21. Foster, J.N., Pilkiewicz, A., Pierce, B.C.: Quotient lenses. In: Proceedings of ICFP, pp 383–396. ACM (2008)Google Scholar
  22. Gasevic, D., Djuric, D., Devedzic, V.: Model Driven Engineering and Ontology Development, 2nd edn. Springer (2009)Google Scholar
  23. Giese, H., Wagner, R.: From model transformation to incremental bidirectional model synchronization. Softw. Syst. Model. 8(1), 21–43 (2009)CrossRefGoogle Scholar
  24. Grundy, J.C., Hosking, J.G., Mugridge, W.B.: Inconsistency management for multiple-view software development environments. IEEE Trans. Softw. Eng. 24(11), 960–981 (1998)CrossRefGoogle Scholar
  25. Grünwald, A., Winkler, D., Sabou, M., Biffl, S.: The semantic model editor: efficient data modeling and integration based on OWL ontologies. In: Proceedings of the 10th International Conference on Semantic Systems (SEMANTICS), pp. 116–123 (2014)Google Scholar
  26. Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL 2 Web Ontology Language Primer. W3C Recommendation (2009a).
  27. Hitzler, P., Sebastian, R., Krtzsch, M.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC, London (2009b).
  28. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Proceedings of POPL, pp. 371–384. ACM (2011)Google Scholar
  29. IEEE Architecture Working Group: IEEE Std 1471–2000. Recommended practice for architectural description of software-intensive systems. Technical Report, IEEE (2000)Google Scholar
  30. ISO/IEC: Reference Model for Open Distributed Processing (RM-ODP). iSO/IEC 10746-1 to 10746-4, ITU-T Recs. X.901 to X.904 (2010)Google Scholar
  31. Ivkovic, I., Kontogiannis, K.: Tracing evolution changes of software artifacts through model synchronization. In: Proceedings of ICSM, pp 252–261. IEEE (2004)Google Scholar
  32. Johann, S., Egyed, A.: Instant and incremental transformation of models. In: Proceedings of ASE, pp. 362–365. IEEE (2004)Google Scholar
  33. Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W., Schwinger, W., Wimmer, M.: Lifting metamodels to ontologies: a step to the semantic integration of modeling languages. In: Proceedings of MODELS, LNCS, vol. 4199, pp. 528–542. Springer (2006a)Google Scholar
  34. Kappel, G., Kargl, H., Wimmer, M., Kapsammer, E., Kramler, G., Reiter, T., Retschitzegger, W., Schwinger, W.: On models and ontologies—a semantic infrastructure supporting model integration. In: Modellierung, GI, pp. 11–27 (2006b)Google Scholar
  35. Kappel, G., Kargl, H., Kramler, G., Schauerhuber, A., Seidl, M., Strommer, M., Wimmer, M.: Matching metamodels with semantic systems—an experience report. In: Proceedings of BTW Workshops, pp. 38–52 (2007)Google Scholar
  36. Knorr, M., Alferes, J.J., Hitzler, P.: Local closed world reasoning with description logics under the well-founded semantics. Artif. Intell. 175(9–10), 1528–1554 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. Knublauch, H.: SPIN—SPARQL Inferencing Notation (2009).,, visited 10-10-2015
  38. Knublauch, H., Ryman, A.: Shapes Constraint Language (SHACL). W3C First Public Working Draft (2015).
  39. Kontokostas, D., Westphal, P., Auer, S., Hellmann, S., Lehmann, J., Cornelissen, R., Zaveri, A.: Test-driven evaluation of linked data quality. In: Proceedings of the 23rd International World Wide Web Conference (WWW), pp. 747–758 (2014)Google Scholar
  40. Kovalenko, O., Serral, E., Sabou, M., Ekaputra, F.J., Winkler, D., Biffl, S.: Automating cross-disciplinary defect detection in multi-disciplinary engineering environments. In: Proceedings of EKAW, LNCS, vol. 8876, pp. 238–249. Springer (2014)Google Scholar
  41. Milanovic, M., Gasevic, D., Giurca, A., Wagner, G., Devedzic, V.: Towards Sharing Rules Between OWL/SWRL and UML/OCL. ECEASST 5 (2006)Google Scholar
  42. Moreno, N., Romero, J.R., Vallecillo, A.: An overview of model-driven web engineering and the MDA. In: Web Engineering: Modelling and Implementing Web Applications, pp. 353–382. Springer (2008)Google Scholar
  43. OMG: Unified Modeling Language (UML). Version 2.4.1 (2011).
  44. OMG: Systems Modeling Language (SysML). Version 1.3 (2012).
  45. Orejas, F., Boronat, A., Ehrig, H., Hermann, F., Schölzel, H.: On propagation-based concurrent model synchronization. ECEASST 57 (2013)Google Scholar
  46. Parreiras, F.S., Staab, S.: Using ontologies with UML class-based modeling: the TwoUse approach. Data Knowl. Eng. 69(11), 1194–1207 (2010)CrossRefGoogle Scholar
  47. Parreiras, F.S., Staab, S., Winter, A.: On marrying ontological and metamodeling technical spaces. In: Proceedings of FSE, pp. 439–448 (2007)Google Scholar
  48. Parreiras, F.S., Staab, S., Schenk, S., Winter, A.: Model driven specification of ontology translations. In: Proceedings of ER, LNCS, vol. 5231, pp. 484–497. Springer (2008)Google Scholar
  49. Prud’hommeaux, E., Gayo, J.E.L., Solbrig, H.R.: Shape expressions: an RDF validation and transformation language. In: Proceedings of the 10th International Conference on Semantic Systems (SEMANTICS), pp. 32–40 (2014)Google Scholar
  50. Rieckhof, F., Seifert, M., Aszmann, U.: Ontology-based model synchronisation. In: Proceedings of TWOMDE Workshop (2010)Google Scholar
  51. Ruiz-Gonzalez, D., Koch, N., Kroiss, C., Romero, J.R., Vallecillo, A.: Viewpoint synchronization of UWE models. In: Proceedings of MDWE Workshop (2009)Google Scholar
  52. Ryman, A.G., Hors, A.L., Speicher, S.: OSLC Resource Shape: A language for defining constraints on Linked Data. In: Proceedings of LDOW, CEUR Workshop Proceedings, vol. 996 (2013)Google Scholar
  53. Schenner, G., Bischof, S., Polleres, A., Steyskal, S.: Integrating distributed configurations with RDFS and SPARQL. In: Proceedings of the 16th International Configuration Workshop, pp. 9–15 (2014)Google Scholar
  54. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Proceedings of the 4th International Conference Graph Transformations (ICGT), pp. 411–425 (2008)Google Scholar
  55. Shearer, R., Motik, B., Horrocks, I.: Hermit: A highly-efficient OWL reasoner. In: Proceedings of the OWLED Workshop on OWL: Experiences and Directions (2008)Google Scholar
  56. Sirin, E., Parsia, B.: Pellet: an OWL DL reasoner. In: Proceedings of the International Workshop on Description Logics (DL) (2004)Google Scholar
  57. Song, H., Gang, H., Chauvel, F., Wei, Z., Sun, Y., Shao, W., Mei, H.: Instant and incremental QVT transformation for runtime models. In: Proceedings of MoDELS, LNCS, vol. 6981, pp. 273–288. Springer (2011)Google Scholar
  58. VDI: Statusreport Referenzarchitekturmodell Industrie 4.0 (RAMI4.0) (2014).
  59. Wache, H, Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hübner, S.: Ontology-based integration of information—a survey of existing approaches. In: Proceedings of IJCAI Workshop: Ontologies and Information, pp. 108–117 (2001)Google Scholar
  60. Wagelaar, D.: Towards using OWL DL as a metamodelling framework for ATL. In: Proceedings of MtATL Workshop, pp. 79–85 (2010)Google Scholar
  61. Walter, T., Parreiras, F.S., Gröner, G., Wende, C.: OWLizing: transforming software models to ontologies. In: Proceedings of ODiSE, pp. 7:1–7:6 (2010)Google Scholar
  62. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J., Schwinger, W.: From the heterogeneity jungle to systematic benchmarking. In: Proceedings of Workshops and Symposia at MODELS, pp. 150–164 (2010)Google Scholar
  63. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic model synchronization from model transformations. In: Proceedings of ASE, pp. 164–173. ACM (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Siemens AG AustriaViennaAustria
  2. 2.Institute for Information Business, WU ViennaViennaAustria
  3. 3.Institute of Software Technology and Interactive Systems, TU ViennaViennaAustria

Personalised recommendations