Arterial and Atherosclerotic Plaque Biomechanics with Application to Stent Angioplasty Modeling

  • Brían L. O’Reilly
  • Claire Conway
  • J. Patrick McGarry
  • Peter E. McHughEmail author
Part of the Studies in Mechanobiology, Tissue Engineering and Biomaterials book series (SMTEB, volume 20)


This chapter provides a brief review of continuum mechanics in relation to application in vascular biomechanics. The initial focus is on arterial tissue, where fundamental constitutive representations, tissue anisotropy, tissue remodeling and damage modeling are overviewed. The focus then shifts to diseased tissue (atherosclerotic plaque tissue), where experimental mechanical characterization, and constitutive and damage modeling are reviewed. Conclusions are drawn on what has been achieved thus far, and the main challenges for the future in characterizing and modeling this complex tissue are identified. Finally, the application of the arterial mechanics in the computational modeling of the stent angioplasty procedure is considered, with future challenges identified.


Rupture Stress Arterial Tissue Continuum Damage Mechanic Mullins Effect Plaque Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge funding from the Irish Research Council (IRC) under the Embark Initiative (C. Conway), the NUI Galway College of Engineering and Informatics (B. O’Reilly), the SFI/HEA Irish Centre for High-End Computing (ICHEC) and the Programme for Research in Third-Level Institutions (PRTLI) Cycle 5 and co-funded under the European Regional Development Fund (ERDF).


  1. Abaqus, Dassault Systèmes, Simulia, Providence, RI, USA (2013)Google Scholar
  2. Akyildiz, A.C., Speelman, L., Gijsen, F.J.: Mechanical properties of human atherosclerotic intima tissue. J. Biomech. 47, 773–783 (2014)CrossRefGoogle Scholar
  3. Alastrué, V., Rodríguez, J.F., Calvo, B., Doblaré, M.: Structural damage models for fibrous biological soft tissues. Int. J. Solids Struct. 44, 5894–5911 (2007)CrossRefzbMATHGoogle Scholar
  4. Balzani, D., Schröder, J., Gross, D.: A simple model for anisotropic damage with applications to soft tissues. PAMM 4, 236–237 (2004)CrossRefGoogle Scholar
  5. Balzani, D., Schröder, J., Gross, D.: Simulation of discontinuous damage incorporating residual stresses in circumferentially overstretched atherosclerotic arteries. Acta Biomater. 2, 609–618 (2006)CrossRefGoogle Scholar
  6. Balzani, D., Brinkhues, S., Holzapfel, G.A.: Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls. Comput. Methods Appl. Mech. Eng. 213, 139–151 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. Barrett, H.E., Cunnane, E.M., Kavanagh, E.G., Walsh, M.T.: On the effect of calcification volume and configuration on the mechanical behaviour of carotid plaque tissue. J. Mech. Behav. Biomed. Mater. 56, 45–56 (2016)CrossRefGoogle Scholar
  8. Barrett, S.R., Sutcliffe, M.P., Howarth, S., Li, Z.Y., Gillard, J.H.: Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J. Biomech. 42, 1650–1655 (2009)CrossRefGoogle Scholar
  9. Bluestein, D., Alemu, Y., Avrahami, I., Gharib, M., Dumont, K., Ricotta, J.J., Einav, S.: Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J. Biomech. 41, 1111–1118 (2008)CrossRefGoogle Scholar
  10. Boland, E.L., Shine, R., Kelly, N., Sweeney, C.A., McHugh, P.E.: A review of material degradation modelling for the analysis and design of bioabsorbable stents. Ann. Biomed. Eng. 44, 341–356 (2015)Google Scholar
  11. Brinkhues, S., Balzani, D., Holzapfel, G.A.: Simulation of damage hysteresis in soft biological tissues. PAMM 9, 155–156 (2009)CrossRefGoogle Scholar
  12. Calvo, B., Peña, E., Martínez, M.A., Doblaré, M.: An uncoupled directional damage model for fibred biological soft tissues. Formulation and computational aspects. Int. J. Numer. Methods Eng. 69, 2036–2057 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Cardoso, L., Weinbaum, S.: Changing views of the biomechanics of vulnerable plaque rupture: a review. Ann. Biomed. Eng. 42, 415–431 (2014)CrossRefGoogle Scholar
  14. Chai, C.-K., Akyildiz, A.C., Speelman, L., Gijsen, F.J., Oomens, C.W., van Sambeek, M.R., van der Lugt, A., Baaijens, F.P.: Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. J. Biomech. 46, 1759–1766 (2013)CrossRefGoogle Scholar
  15. Chai, C.-K., Speelman, L., Oomens, C.W., Baaijens, F.P.: Compressive mechanical properties of atherosclerotic plaques-Indentation test to characterise the local anisotropic behaviour. J. Biomech. 47, 784–792 (2014)CrossRefGoogle Scholar
  16. Cheng, G.C., Loree, H.M., Kamm, R.D., Fishbein, M.C., Lee, R.T.: Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87, 1179–1187 (1993)CrossRefGoogle Scholar
  17. Chua, S.N.D., MacDonald, B.J., Hashmi, M.S.J.: Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. J. Mater. Process. Technol. 155, 1772–1779 (2004)CrossRefGoogle Scholar
  18. Ciarletta, P., Dario, P., Micera, S.: Pseudo-hyperelastic model of tendon hysteresis from adaptive recruitment of collagen type I fibrils. Biomaterials 29, 764–770 (2008)CrossRefGoogle Scholar
  19. Cilla, M., Peña, E., Martínez, M.A.: 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Biomech. Model. Mechanobiol. 11, 1001–1013 (2012)CrossRefGoogle Scholar
  20. Conway, C.: The development of a computational test-bed to assess coronary stent implantation. Ph.D. thesis, National University of Ireland, Galway (2013)Google Scholar
  21. Conway, C., Sharif, F., McGarry, J.P., McHugh, P.E.: A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3, 374–387 (2012)CrossRefGoogle Scholar
  22. Conway, C., McGarry, J.P., McHugh, P.E.: Modelling of atherosclerotic plaque for use in a computational test-bed for stent angioplasty. Ann. Biomed. Eng. 42, 2425–2439 (2014)CrossRefGoogle Scholar
  23. Creane, A.: Identification of potential clinical indicators of carotid plaque disruption using patient specific finite element modelling. Ph.D. thesis, Dublin City University (2011)Google Scholar
  24. Creane, A., Maher, E., Sultan, S., Hynes, N., Kelly, D.J., Lally, C.: A remodelling metric for angular fibre distributions and its application to diseased carotid bifurcations. Biomech. Model. Mechanobiol. 11, 869–882 (2012)CrossRefGoogle Scholar
  25. Dorfmann, A., Ogden, R.W.: A pseudo-elastic model for loading, partial unloading and reloading of particle-reinforced rubber. Int. J. Solids Struct. 40, 2699–2714 (2003)CrossRefzbMATHGoogle Scholar
  26. Dorfmann, A., Ogden, R.W.: A constitutive model for the Mullins effect with permanent set in particle-reinforced rubber. Int. J. Solids Struct. 41, 1855–1878 (2004)CrossRefzbMATHGoogle Scholar
  27. Driessen, N.J., Wilson, W., Bouten, C.V., Baaijens, F.P.: A computational model for collagen fibre remodelling in the arterial wall. J. Theor. Biol. 226, 53–64 (2004)CrossRefGoogle Scholar
  28. Ebenstein, D.M., Coughlin, D., Chapman, J., Li, C., Pruitt, L.A.: Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J. Biomed. Mater. Res. A 91, 1028–1037 (2009)CrossRefGoogle Scholar
  29. Ehret, A.E., Itskov, M.: Modeling of anisotropic softening phenomena: application to soft biological tissues. Int. J. Plast. 25, 901–919 (2009)CrossRefzbMATHGoogle Scholar
  30. FDA: Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems. Printable version (2010).
  31. Ferrara, A., Pandolfi, A.: Numerical modelling of fracture in human arteries. Comput. Meth. Biomech. Biomed. Eng. 11, 553–567 (2008)CrossRefGoogle Scholar
  32. Franceschini, G., Bigoni, D., Regitnig, P., Holzapfel, G.A.: Brain tissue deforms similarly to filled elastomers and follows consolidation theory. J. Mech. Phys. Solids 54, 2592–2620 (2006)CrossRefzbMATHGoogle Scholar
  33. García, A., Peña, E., Martínez, M.A.: Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J. Mech. Behav. Biomed. Mater. 10, 166–175 (2012)CrossRefGoogle Scholar
  34. Gasser, T.C.: An irreversible constitutive model for fibrous soft biological tissue: a 3-D microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta Biomater. 7, 2457–2466 (2011)CrossRefGoogle Scholar
  35. Gasser, T.C., Holzapfel, G.A.: Modeling plaque fissuring and dissection during balloon angioplasty intervention. Ann. Biomed. Eng. 35, 711–723 (2007)CrossRefGoogle Scholar
  36. Gasser, T.C., Ogden, R.W., Holzapfel, G.A.: Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3, 15–35 (2006)CrossRefGoogle Scholar
  37. Gastaldi, D., Morlacchi, S., Nichetti, R., Capelli, C., Dubini, G., Petrini, L., Migliavacca, F.: Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9, 551–561 (2010)CrossRefGoogle Scholar
  38. Gijsen, F.J., Migliavacca, F.: Plaque mechanics. J. Biomech. 4, 763–764 (2014)CrossRefGoogle Scholar
  39. Gracía, L.A., Peña, E., Royo, J.M., Pelegay, J.L., Calvo, B.: A comparison between pseudo-elastic and damage models for modelling the Mullins effect in industrial rubber components. Mech. Res. Commun. 36, 769–776 (2009)CrossRefzbMATHGoogle Scholar
  40. Grogan, J.A., O’Brien, B.J., Leen, S.B., McHugh, P.E.: A corrosion model for bioabsorbable metallic stents. Acta Biomater. 7, 3523–3533 (2011)CrossRefGoogle Scholar
  41. Grogan, J.A., Leen, S.B., McHugh, P.E.: Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34, 8049–8060 (2013)CrossRefGoogle Scholar
  42. Gu, L., Zhao, S., Muttyam, A.K., Hammel, J.M.: The relation between the arterial stress and restenosis rate after coronary stenting. J. Med. Devices 4, 031005 (2010)CrossRefGoogle Scholar
  43. Hariton, I., de Botton, G., Gasser, T.C., Holzapfel, G.A.: Stress-driven collagen fiber remodeling in arterial walls. Biomech. Model. Mechanobiol. 6, 163–175 (2007)CrossRefGoogle Scholar
  44. Hokanson, J., Yazdani, S.: A constitutive model of the artery with damage. Mech. Res. Commun. 24, 151–159 (1997)CrossRefzbMATHGoogle Scholar
  45. Holzapfel, G.A., Gasser, T.C., Ogden, R.W.: A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61, 1–48 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  46. Holzapfel, G.A., Sommer, G., Regitnig, P.: Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126, 657–665 (2004)CrossRefGoogle Scholar
  47. Holzapfel, G.A., Sommer, G., Gasser, C.T., Regitnig, P.: Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol.-Heart Circ. Physiol. 289, H2048–H2058 (2005a)Google Scholar
  48. Holzapfel, G.A., Stadler, M., Gasser, T.C.: Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127, 166–180 (2005b)CrossRefGoogle Scholar
  49. Holzapfel, G.A., Mulvihill, J.J., Cunnane, E.M., Walsh, M.T.: Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomech. 47, 859–869 (2014)CrossRefGoogle Scholar
  50. Iannaccone, F., Debusschere, N., De Bock, S., De Beule, M., Van Loo, D., Vermassen, F., Segers, P., Verhegghe, B.: The influence of vascular anatomy on carotid artery stenting: a parametric study for damage assessment. J. Biomech. 47, 890–898 (2014)CrossRefGoogle Scholar
  51. Kelly-Arnold, A., Maldonado, N., Laudier, D., Aikawa, E., Cardoso, L., Weinbaum, S.: Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Nat. Acad. Sci. 110, 10741–10746 (2013)CrossRefGoogle Scholar
  52. Kiousis, D.E., Gasser, T.C., Holzapfel, G.A.: A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35, 1857–1869 (2007)CrossRefGoogle Scholar
  53. Kolandaivelu, K., Leiden, B.B., Edelman, E.R.: Predicting response to endovascular therapies: dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty. J. Biomech. 47, 908–921 (2014)CrossRefGoogle Scholar
  54. Lawlor, M.G., O’Donnell, M.R., O’Connell, B.M., Walsh, M.T.: Experimental determination of circumferential properties of fresh carotid artery plaques. J. Biomech. 44, 1709–1715 (2011)CrossRefGoogle Scholar
  55. Lee, R.T., Grodzinsky, A.J., Frank, E.H., Kamm, R.D., Schoen, F.J.: Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83, 1764–1770 (1991)CrossRefGoogle Scholar
  56. Lee, R.T., Richardson, S.G., Loree, H.M., Grodzinsky, A.J., Gharib, S.A., Schoen, F.J., Pandian, N.: Prediction of mechanical properties of human atherosclerotic tissue by high-frequency intravascular ultrasound imaging. An in vitro study. Arterioscler. Thromb. 12, 1–5 (1992)CrossRefGoogle Scholar
  57. Leng, X., Chen, X., Deng, X., Sutton, M.A., Lessner, S.M.: Modeling of experimental atherosclerotic plaque delamination. Ann. Biomed. Eng. 43, 2838–2851 (2015a)CrossRefGoogle Scholar
  58. Leng, X., Chen, X., Deng, X., Sutton, M.A., Lessner, S.M.: Simulation of atherosclerotic plaque delamination using the cohesive zone model. In: Barthelat, F., Korach, C., Zavatierri, P., Prorok, B.C., Grande-Allen, K.J. (eds.) Mechanics of Biological Systems and Materials, vol. 7, pp. 81–88. Springer, Berlin (2015b)Google Scholar
  59. Li, Z.-Y., Howarth, S., Trivedi, R.A.: U-King-Im, J.M., Graves, M.J., Brown, A., Wang, L., Gillard, J.H.: Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39, 2611–2622 (2006)CrossRefGoogle Scholar
  60. Loree, H.M., Grodzinsky, A.J., Park, S.Y., Gibson, L.J., Lee, R.T.: Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27, 195–204 (1994)CrossRefGoogle Scholar
  61. Maher, E., Creane, A., Sultan, S., Hynes, N., Lally, C., Kelly, D.J.: Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J. Biomech. 42, 2760–2767 (2009)CrossRefGoogle Scholar
  62. Maher, E., Creane, A., Sultan, S., Hynes, N., Lally, C., Kelly, D.J.: Inelasticity of human carotid atherosclerotic plaque. Ann. Biomed. Eng. 39, 2445–2455 (2011)CrossRefGoogle Scholar
  63. Maher, E., Creane, A., Lally, C., Kelly, D.J.: An anisotropic inelastic constitutive model to describe stress softening and permanent deformation in arterial tissue. J. Mech. Behav. Biomed. Mater. 12, 9–19 (2012)CrossRefGoogle Scholar
  64. Máirtín, É.Ó., Parry, G., Beltz, G.E., McGarry, J.P.: Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure-Part II: Finite element applications. J. Mech. Phys. Solids 63, 363–385 (2014)CrossRefGoogle Scholar
  65. Maldonado, N., Kelly-Arnold, A., Vengrenyuk, Y., Laudier, D., Fallon, J.T., Virmani, R., Cardoso, L., Weinbaum, S.: A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am. J. Physiol.-Heart Circ. Physiol. 303, H619–H628 (2012)Google Scholar
  66. Martin, C., Sun, W.: Modeling of long-term fatigue damage of soft tissue with stress softening and permanent set effects. Biomech. Model. Mechanobiol. 12, 645–655 (2013)CrossRefGoogle Scholar
  67. McGarry, J.P., Máirtín, É.Ó., Parry, G., Beltz, G.E.: Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure. Part I: Theoretical analysis. J. Mech. Phys. Solids 63, 336–362 (2014)CrossRefGoogle Scholar
  68. McHugh, P.E., Grogan, J.A., Conway, C., Boland, E.: Computational modeling for analysis and design of metallic biodegradable stents. J. Med. Devices 9, 030946 (2015)CrossRefGoogle Scholar
  69. Miehe, C.: Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials. Eur. J. Mech.-A/Solids 14, 697–720 (1995)Google Scholar
  70. Migliavacca, F., Petrini, L., Massarotti, P., Schievano, S., Auricchio, F., Dubini, G.: Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2, 205–217 (2004)CrossRefGoogle Scholar
  71. Migliavacca, F., Gervaso, F., Prosi, M., Zunino, P., Minisini, S., Formaggia, L., Dubini, G.: Expansion and drug elution model of a coronary stent. Comput. Meth. Biomech. Biomed. Eng. 10, 63–73 (2007)CrossRefGoogle Scholar
  72. Morlacchi, S., Migliavacca, F.: Modeling stented coronary arteries: where we are, where to go. Ann. Biomed. Eng. 41, 1428–1444 (2013)CrossRefGoogle Scholar
  73. Morlacchi, S., Colleoni, S.G., Cárdenes, R., Chiastri, C., Diez, J.L., Larrabide, I., Migliavacca, F.: Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35, 1272–1281 (2013)CrossRefGoogle Scholar
  74. Morlacchi, S., Pennati, G., Petrini, L., Dubini, G., Migliavacca, F.: Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 47, 899–907 (2014)CrossRefGoogle Scholar
  75. Mulvihill, J.J., Cunnane, E.M., McHugh, S.M., Kavanagh, E.G., Walsh, S.R., Walsh, M.T.: Mechanical, biological and structural characterization of in vitro ruptured human carotid plaque tissue. Acta Biomater. 9, 9027–9035 (2013)CrossRefGoogle Scholar
  76. Nolan, D.R., Gower, A.L., Destrade, M., Ogden, R.W., McGarry, J.P.: A robust anisotropic hyperelastic formulation for the modelling of soft tissue. J. Mech. Behav. Biomed. Mater. 39, 48–60 (2014)CrossRefGoogle Scholar
  77. Nolan, D.R., McGarry, J.P.: On the compressibility of arterial tissue. Ann. Biomed. Eng. (2015) (in Press). doi: 10.1007/s10439-015-1417-1
  78. Nguyen, C.M., Levy, A.J.: The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion. J. Biomech. 43, 2702–2708 (2010)CrossRefGoogle Scholar
  79. Ogden, R.W., Roxburgh, D.G.: A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R. Soc. Lond. A 455, 2861–2877 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  80. Pant, S., Limbert, G., Curzen, N.P., Bressloff, N.W.: Multiobjective design optimisation of coronary stents. Biomaterials 32, 7755–7773 (2011)CrossRefGoogle Scholar
  81. Pei, X., Wu, B., Li, Z.-Y.: Fatigue crack propagation analysis of plaque rupture. J. Biomech. Eng. 135, 101003 (2013)CrossRefGoogle Scholar
  82. Peña, E.: A rate dependent directional damage model for fibred materials: application to soft biological tissues. Comput. Mech. 48, 407–420 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  83. Peña, E., Doblaré, M.: An anisotropic pseudo-elastic approach for modelling Mullins effect in fibrous biological materials. Mech. Res. Commun. 36, 784–790 (2009)CrossRefzbMATHGoogle Scholar
  84. Peña, E., Martins, P., Mascarenhas, T.: Natal Jorge, R.M., Ferreira, A., Doblaré, M., Calvo, B.: Mechanical characterization of the softening behavior of human vaginal tissue. J. Mech. Behav. Biomed. Mater. 4, 275–283 (2011)CrossRefGoogle Scholar
  85. Pericevic, I., Lally, C., Toner, D., Kelly, D.J.: The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med. Eng. Phys. 31, 428–433 (2009)CrossRefGoogle Scholar
  86. Peña, E., Peña, J.A., Doblaré, M.: On the Mullins effect and hysteresis of fibered biological materials: a comparison between continuous and discontinuous damage models. Int. J. Solids Struct. 46, 1727–1735 (2009)CrossRefzbMATHGoogle Scholar
  87. Petrini, L., Migliavacca, F., Dubini, G., Auricchio, F.: Numerical analysis of vascular stents exploiting shape-memory-alloy behavior. In: 16th AIMETA Congress of the Theoretical and Applied Mechanics, pp. 1–10 (2003)Google Scholar
  88. Rodríguez, J.F., Cacho, F., Bea, J.A., Doblaré, M.: A stochastic-structurally based three dimensional finite-strain damage model for fibrous soft tissue. J. Mech. Phys. Solids 54, 864–886 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  89. Rodríguez, J.F., Alastrué, V., Doblaré, M.: Finite element implementation of a stochastic three dimensional finite-strain damage model for fibrous soft tissue. Comput. Meth. Appl. Mech. Eng. 197, 946–958 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  90. Sadat, U., Li, Z.-Y., Young, V.E., Graves, M.J., Boyle, J.R., Warburton, E.A., Varty, K., O’Brien, E., Gillard, J.H.: Finite element analysis of vulnerable atherosclerotic plaques: a comparison of mechanical stresses within carotid plaques of acute and recently symptomatic patients with carotid artery disease. J. Neurol. Neurosurg. Psychiatry 81, 286–289 (2010)CrossRefGoogle Scholar
  91. Salunke, N.V., Topoleski, L.D., Humphrey, J.D., Mergner, W.J.: Compressive stress-relaxation of human atherosclerotic plaque. J. Biomed. Mater. Res. 55, 236–241 (2001)CrossRefGoogle Scholar
  92. Serruys, P.W., Onuma, Y., Morel, M.: CAAS 2D/ 3D QCA Bifurcation analysis approach. European Bifurcation Club, Prague (2008)Google Scholar
  93. Stary, H.C.: Atlas of Atherosclerosis: Progression and Regression, 1st edn. CRC Press, New York (1999)Google Scholar
  94. Tang, D., Teng, Z., Canton, G., Hatsukami, T.S., Dong, L., Huang, X., Yuan, C.: Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. Biomed. Eng. Online 8, 15 (2009a). doi: 10.1186/1475-925X-8-15 CrossRefGoogle Scholar
  95. Tang, D., Yang, C., Kobayashi, S., Zheng, J., Woodard, P.K., Teng, Z., Billiar, K., Bach, R., Ku, D.N.: 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J. Biomech. Eng. 131, 061010 (2009b)CrossRefGoogle Scholar
  96. Teng, Z., Tang, D., Zheng, J., Woodard, P.K., Hoffman, A.H.: An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J. Biomech. 42, 2535–2539 (2009)CrossRefGoogle Scholar
  97. Timmins, L.H., Meyer, C.A., Moreno, M.R., Moore, J.E.: Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics. J. Endovasc. Ther. 15, 643–654 (2008)CrossRefGoogle Scholar
  98. Topoleski, L.D., Salunke, N.V.: Mechanical behavior of calcified plaques: a summary of compression and stress-relaxation experiments. Z. Kardiol. 89, S085–S091 (2000)CrossRefGoogle Scholar
  99. Topoleski, L.D., Salunke, N.V., Humphrey, J.D., Mergner, W.J.: Composition- and history-dependent radial compressive behavior of human atherosclerotic plaque. J. Biomed. Mater. Res. 35, 117–127 (1997)CrossRefGoogle Scholar
  100. Versluis, A., Bank, A.J., Douglas, W.H.: Fatigue and plaque rupture in myocardial infarction. J. Biomech. 39, 339–347 (2006)CrossRefGoogle Scholar
  101. Volokh, K.: Prediction of arterial failure based on a microstructural bi-layer fiber-matrix model with softening. J. Biomech. 41, 447–453 (2008)CrossRefGoogle Scholar
  102. Walraevens, J., Willaert, B., De Win, G., Ranftl, A., De Schutter, J., Vander Sloten, J.: Correlation between compression, tensile and tearing tests on healthy and calcified aortic tissues. Med. Eng. Phys. 30, 1098–1104 (2008)CrossRefGoogle Scholar
  103. Walsh, M.T., Cunnane, E.M., Mulvihill, J.J., Akyildiz, A.C., Gijsen, F.J., Holzapfel, G.A.: Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J. Biomech. 47, 793–804 (2014)CrossRefGoogle Scholar
  104. Weisbecker, H., Pierce, D.M., Holzapfel, G.A.: Modeling of damage-induced softening for arterial tissue. In: Proceedings of the 2011 SCATh Joint Workshop on New Tecnologies for Computer/robot Assisted Surgery, Graz, pp. 1–4 (2011)Google Scholar
  105. Weisbecker, H., Pierce, D.M., Regitnig, P., Holzapfel, G.A.: Layer-specific damage experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic intimal thickening. J. Mech. Behav. Biomed. Mater. 12, 93–106 (2012)CrossRefGoogle Scholar
  106. Wenk, J.F., Papadopoulos, P., Zohdi, T.I.: Numerical modeling of stress in stenotic arteries with microcalcifications: a micromechanical approximation. J. Biomech. Eng. 132, 091011 (2010)CrossRefGoogle Scholar
  107. Wong, K.K., Thavornpattanapong, P., Cheung, S.C., Sun, Z., Tu, J.: Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovasc. Disord. 12, 7 (2012). doi: 10.1186/1471-2261-12-7 CrossRefGoogle Scholar
  108. Zahedmanesh, H., Kelly, D.J., Lally, C.: Simulation of a balloon expandable stent in a realistic coronary artery-determination of the optimum modelling strategy. J. Biomech. 43, 2126–2132 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Brían L. O’Reilly
    • 1
  • Claire Conway
    • 1
  • J. Patrick McGarry
    • 1
  • Peter E. McHugh
    • 1
    Email author
  1. 1.National University of IrelandGalwayIreland

Personalised recommendations