Protein Structural Analysis via Mass Spectrometry-Based Proteomics

  • Antonio Artigues
  • Owen W. Nadeau
  • Mary Ashley Rimmer
  • Maria T. Villar
  • Xiuxia Du
  • Aron W. Fenton
  • Gerald M. Carlson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 919)


Modern mass spectrometry (MS) technologies have provided a versatile platform that can be combined with a large number of techniques to analyze protein structure and dynamics. These techniques include the three detailed in this chapter: (1) hydrogen/deuterium exchange (HDX), (2) limited proteolysis, and (3) chemical crosslinking (CX). HDX relies on the change in mass of a protein upon its dilution into deuterated buffer, which results in varied deuterium content within its backbone amides. Structural information on surface exposed, flexible or disordered linker regions of proteins can be achieved through limited proteolysis, using a variety of proteases and only small extents of digestion. CX refers to the covalent coupling of distinct chemical species and has been used to analyze the structure, function and interactions of proteins by identifying crosslinking sites that are formed by small multi-functional reagents, termed crosslinkers. Each of these MS applications is capable of revealing structural information for proteins when used either with or without other typical high resolution techniques, including NMR and X-ray crystallography.


Protein structural analysis Hydrogen/Deuterium Exchange (HDX) Limited proteolysis Chemical Crosslinking (CX) 


  1. 1.
    Baldwin RL (2011) Early days of protein hydrogen exchange: 1954–1972. Proteins 79:2021–2026PubMedCrossRefGoogle Scholar
  2. 2.
    Hvidt A, Linderstrom-Lang K (1954) Exchange of hydrogen atoms in insulin with deuterium atoms in aqueous solutions. Biochim Biophys Acta 14:574–575PubMedCrossRefGoogle Scholar
  3. 3.
    Schellman JA, Schellman CG (1997) Kaj Ulrik Linderstrom-Lang (1896–1959). Protein Sci 6:1092–1100PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Sheinblatt M (1970) Determination of an acidity scale for peptide hydrogens from nuclear magnetic resonance kinetic studies. J Am Chem Soc 92:2505–2509PubMedCrossRefGoogle Scholar
  5. 5.
    Molday RS, Englander SW, Kallen RG (1972) Primary structure effects on peptide group hydrogen exchange. Biochemistry 11:150–158PubMedCrossRefGoogle Scholar
  6. 6.
    Rosa JJ, Richards FM (1979) An experimental procedure for increasing the structural resolution of chemical hydrogen-exchange measurements on proteins: application to ribonuclease S peptide. J Mol Biol 133:399–416PubMedCrossRefGoogle Scholar
  7. 7.
    Wagner G, Wuthrich K (1982) Amide protein exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution. Studies with two-dimensional nuclear magnetic resonance. J Mol Biol 160:343–361PubMedCrossRefGoogle Scholar
  8. 8.
    Katta V, Chait BT (1991) Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. Rapid Commun Mass Spectrom 5:214–217PubMedCrossRefGoogle Scholar
  9. 9.
    Pascal BD, Willis S, Lauer JL, Landgraf RR, West GM, Marciano D, Novick S, Goswami D, Chalmers MJ, Griffin PR (2012) HDX workbench: software for the analysis of H/D exchange MS data. J Am Soc Mass Spectrom 23:1512–1521PubMedCrossRefGoogle Scholar
  10. 10.
    Villar MT, Miller DE, Fenton AW, Artigues A (2010) SAIDE: A Semi-Automated Interface for Hydrogen/Deuterium Exchange Mass Spectrometry. Proteomica 6:63–69PubMedPubMedCentralGoogle Scholar
  11. 11.
    Englander JJ, Rogero JR, Englander SW (1985) Protein hydrogen exchange studied by the fragment separation method. Anal Biochem 147:234–244PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25:158–170PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2:522–531PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Smith DL, Deng Y, Zhang Z (1997) Probing the non-covalent structure of proteins by amide hydrogen exchange and mass spectrometry. J Mass Spectrom 32:135–146PubMedCrossRefGoogle Scholar
  15. 15.
    Hamuro Y, Coales SJ, Southern MR, Nemeth-Cawley JF, Stranz DD, Griffin PR (2003) Rapid analysis of protein structure and dynamics by hydrogen/deuterium exchange mass spectrometry. J Biomol Tech 14:171–182PubMedPubMedCentralGoogle Scholar
  16. 16.
    Englander SW (2006) Hydrogen exchange and mass spectrometry: a historical perspective. J Am Soc Mass Spectrom 17:1481–1489PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Busenlehner LS, Armstrong RN (2005) Insights into enzyme structure and dynamics elucidated by amide H/D exchange mass spectrometry. Arch Biochem Biophys 433:34–46PubMedCrossRefGoogle Scholar
  18. 18.
    Chalmers MJ, Busby SA, Pascal BD, He Y, Hendrickson CL, Marshall AG, Griffin PR (2006) Probing protein ligand interactions by automated hydrogen/deuterium exchange mass spectrometry. Anal Chem 78:1005–1014PubMedCrossRefGoogle Scholar
  19. 19.
    Chalmers MJ, Busby SA, Pascal BD, Southern MR, Griffin PR (2007) A two-stage differential hydrogen deuterium exchange method for the rapid characterization of protein/ligand interactions. J Biomol Tech 18:194–204PubMedPubMedCentralGoogle Scholar
  20. 20.
    Hoofnagle AN, Resing KA, Ahn NG (2004) Practical methods for deuterium exchange/mass spectrometry. Methods Mol Biol 250:283–298PubMedGoogle Scholar
  21. 21.
    Englander SW, Downer NW, Teitelbaum H (1972) Hydrogen exchange. Annu Rev Biochem 41:903–924PubMedCrossRefGoogle Scholar
  22. 22.
    Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17:75–86PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Weis DD, Wales TE, Engen JR, Hotchko M, Ten Eyck LF (2006) Identification and characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. J Am Soc Mass Spectrom 17:1498–1509PubMedCrossRefGoogle Scholar
  24. 24.
    Ferraro DM, Lazo N, Robertson AD (2004) EX1 hydrogen exchange and protein folding. Biochemistry 43:587–594PubMedCrossRefGoogle Scholar
  25. 25.
    Krishna MM, Hoang L, Lin Y, Englander SW (2004) Hydrogen exchange methods to study protein folding. Methods 34:51–64PubMedCrossRefGoogle Scholar
  26. 26.
    Miller DE, Prasannan CB, Villar MT, Fenton AW, Artigues A (2012) HDXFinder: automated analysis and data reporting of Deuterium/Hydrogen exchange mass spectrometry. J Am Soc Mass Spectrom 23:425–429PubMedCrossRefGoogle Scholar
  27. 27.
    Pascal BD, Chalmers MJ, Busby SA, Griffin PR (2009) HD desktop: an integrated platform for the analysis and visualization of H/D exchange data. J Am Soc Mass Spectrom 20:601–610PubMedCrossRefGoogle Scholar
  28. 28.
    Weis DD, Engen JR, Kass IJ (2006) Semi-automated data processing of hydrogen exchange mass spectra using HX-express. J Am Soc Mass Spectrom 17:1700–1703PubMedCrossRefGoogle Scholar
  29. 29.
    Lou X, Kirchner M, Renard BY, Kothe U, Boppel S, Graf C, Lee CT, Steen JA, Steen H, Mayer MP, Hamprecht FA (2010) Deuteration distribution estimation with improved sequence coverage for HX/MS experiments. Bioinformatics 26:1535–1541PubMedCrossRefGoogle Scholar
  30. 30.
    Lindner R, Lou X, Reinstein J, Shoeman RL, Hamprecht FA, Winkler A (2014) Hexicon 2: automated processing of hydrogen-deuterium exchange mass spectrometry data with improved deuteration distribution estimation. J Am Soc Mass Spectrom 25:1018–1028PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Zhang Z, Marshall AG (1998) A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J Am Soc Mass Spectrom 9:225–233PubMedCrossRefGoogle Scholar
  32. 32.
    Connelly GP, Bai Y, Jeng MF, Englander SW (1993) Isotope effects in peptide group hydrogen exchange. Proteins 17:87–92PubMedCrossRefGoogle Scholar
  33. 33.
    Liu YH, Konermann L (2006) Enzyme conformational dynamics during catalysis and in the ‘resting state’ monitored by hydrogen/deuterium exchange mass spectrometry. FEBS Lett 580:5137–5142PubMedCrossRefGoogle Scholar
  34. 34.
    Hu W, Walters BT, Kan ZY, Mayne L, Rosen LE, Marqusee S, Englander SW (2013) Stepwise protein folding at near amino acid resolution by hydrogen exchange and mass spectrometry. Proc Natl Acad Sci U S A 110:7684–7689PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wintrode PL, Rojsajjakul T, Vadrevu R, Matthews CR, Smith DL (2005) An obligatory intermediate controls the folding of the alpha-subunit of tryptophan synthase, a TIM barrel protein. J Mol Biol 347:911–919PubMedCrossRefGoogle Scholar
  36. 36.
    Yang H, Smith DL (1997) Kinetics of cytochrome c folding examined by hydrogen exchange and mass spectrometry. Biochemistry 36:14992–14999PubMedCrossRefGoogle Scholar
  37. 37.
    Busby SA, Chalmers MJ, Griffin PR (2007) Improving digestion efficiency under H/D exchange conditions with activated pepsinogen coupled cloumns. Int J Mass Spectrom 259:130–139CrossRefGoogle Scholar
  38. 38.
    Ahn J, Jung MC, Wyndham K, Yu YQ, Engen JR (2012) Pepsin immobilized on high-strength hybrid particles for continuous flow online digestion at 10,000 psi. Anal Chem 84:7256–7262PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wu Y, Kaveti S, Engen JR (2006) Extensive deuterium back-exchange in certain immobilized pepsin columns used for H/D exchange mass spectrometry. Anal Chem 78:1719–1723PubMedCrossRefGoogle Scholar
  40. 40.
    Tsybin YO, Haselmann KF, Emmett MR, Hendrickson CL, Marshall AG (2006) Charge location directs electron capture dissociation of peptide dications. J Am Soc Mass Spectrom 17:1704–1711PubMedCrossRefGoogle Scholar
  41. 41.
    Demmers JA, Rijkers DT, Haverkamp J, Killian JA, Heck AJ (2002) Factors affecting gas-phase deuterium scrambling in peptide ions and their implications for protein structure determination. J Am Chem Soc 124:11191–11198PubMedCrossRefGoogle Scholar
  42. 42.
    Ferguson PL, Konermann L (2008) Nonuniform isotope patterns produced by collision-induced dissociation of homogeneously labeled ubiquitin: implications for spatially resolved hydrogen/deuterium exchange ESI-MS studies. Anal Chem 80:4078–4086PubMedCrossRefGoogle Scholar
  43. 43.
    Ferguson PL, Pan J, Wilson DJ, Dempsey B, Lajoie G, Shilton B, Konermann L (2007) Hydrogen/deuterium scrambling during quadrupole time-of-flight MS/MS analysis of a zinc-binding protein domain. Anal Chem 79:153–160PubMedCrossRefGoogle Scholar
  44. 44.
    Jorgensen TJ, Bache N, Roepstorff P, Gardsvoll H, Ploug M (2005) Collisional activation by MALDI tandem time-of-flight mass spectrometry induces intramolecular migration of amide hydrogens in protonated peptides. Mol Cell Proteomics 4:1910–1919PubMedCrossRefGoogle Scholar
  45. 45.
    Jorgensen TJ, Gardsvoll H, Ploug M, Roepstorff P (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J Am Chem Soc 127:2785–2793PubMedCrossRefGoogle Scholar
  46. 46.
    Kim MY, Maier CS, Reed DJ, Deinzer ML (2001) Site-specific amide hydrogen/deuterium exchange in E. coli thioredoxins measured by electrospray ionization mass spectrometry. J Am Chem Soc 123:9860–9866PubMedCrossRefGoogle Scholar
  47. 47.
    Xu G, Takamoto K, Chance MR (2003) Radiolytic modification of basic amino acid residues in peptides: probes for examining protein-protein interactions. Anal Chem 75:6995–7007PubMedCrossRefGoogle Scholar
  48. 48.
    Sharp JS, Becker JM, Hettich RL (2003) Protein surface mapping by chemical oxidation: structural analysis by mass spectrometry. Anal Biochem 313:216–225PubMedCrossRefGoogle Scholar
  49. 49.
    Hambly DM, Gross ML (2005) Laser flash photolysis of hydrogen peroxide to oxidize protein solvent-accessible residues on the microsecond timescale. J Am Soc Mass Spectrom 16:2057–2063PubMedCrossRefGoogle Scholar
  50. 50.
    Takamoto K, Chance MR (2006) Radiolytic protein footprinting with mass spectrometry to probe the structure of macromolecular complexes. Annu Rev Biophys Biomol Struct 35:251–276PubMedCrossRefGoogle Scholar
  51. 51.
    Konermann L, Stocks BB, Pan Y, Tong X (2010) Mass spectrometry combined with oxidative labeling for exploring protein structure and folding. Mass Spectrom Rev 29:651–667PubMedGoogle Scholar
  52. 52.
    Linderstrom-Land K, Ottesen M (1947) A new protein from ovalbumin. Nature 159:807PubMedCrossRefGoogle Scholar
  53. 53.
    Neurath H (1979) Limited proteolysis, protein folding and physiological regulation. In: Jaenicke R (ed) Protein folding. Elsevier/North-Holland Biomedical Press, University of Regensburg, RegensburgGoogle Scholar
  54. 54.
    Bloxham DP, Ericsson LH, Titani K, Walsh KA, Neurath H (1980) Limited proteolysis of pig heart citrate synthase by subtilisin, chymotrypsin, and trypsin. Biochemistry (Mosc) 19:3979–3985CrossRefGoogle Scholar
  55. 55.
    Fontana A, de Laureto PP, Spolaore B, Frare E (2012) Identifying disordered regions in proteins by limited proteolysis. Methods Mol Biol 896:297–318PubMedCrossRefGoogle Scholar
  56. 56.
    Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry (Mosc) 25:1847–1851CrossRefGoogle Scholar
  57. 57.
    Bantscheff M, Weiss V, Glocker MO (1999) Identification of linker regions and domain borders of the transcription activator protein NtrC from Escherichia coli by limited proteolysis, in-gel digestion, and mass spectrometry. Biochemistry (Mosc) 38:11012–11020CrossRefGoogle Scholar
  58. 58.
    Hubbard SJ (1998) The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta 1382:191–206PubMedCrossRefGoogle Scholar
  59. 59.
    Hubbard SJ, Eisenmenger F, Thornton JM (1994) Modeling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3:757–768PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60:2299–2301PubMedCrossRefGoogle Scholar
  61. 61.
    Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71PubMedCrossRefGoogle Scholar
  62. 62.
    Suh MJ, Pourshahian S, Limbach PA (2007) Developing limited proteolysis and mass spectrometry for the characterization of ribosome topography. J Am Soc Mass Spectrom 18:1304–1317PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Feng Y, De Franceschi G, Kahraman A, Soste M, Melnik A, Boersema PJ, de Laureto PP, Nikolaev Y, Oliveira AP, Picotti P (2014) Global analysis of protein structural changes in complex proteomes. Nat Biotechnol 32:1036–1044PubMedCrossRefGoogle Scholar
  64. 64.
    Orru S, Dal Piaz F, Casbarra A, Biasiol G, De Francesco R, Steinkuhler C, Pucci P (1999) Conformational changes in the NS3 protease from hepatitis C virus strain Bk monitored by limited proteolysis and mass spectrometry. Protein Sci 8:1445–1454PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zappacosta F, Pessi A, Bianchi E, Venturini S, Sollazzo M, Tramontano A, Marino G, Pucci P (1996) Probing the tertiary structure of proteins by limited proteolysis and mass spectrometry: the case of Minibody. Protein Sci 5:802–813PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bothner B, Dong XF, Bibbs L, Johnson JE, Siuzdak G (1998) Evidence of viral capsid dynamics using limited proteolysis and mass spectrometry. J Biol Chem 273:673–676PubMedCrossRefGoogle Scholar
  67. 67.
    Fontana A, Zambonin M, Polverino de Laureto P, De Filippis V, Clementi A, Scaramella E (1997) Probing the conformational state of apomyoglobin by limited proteolysis. J Mol Biol 266:223–230PubMedCrossRefGoogle Scholar
  68. 68.
    Villa JA, Cabezas M, de la Cruz F, Moncalian G (2014) Use of limited proteolysis and mutagenesis to identify folding domains and sequence motifs critical for wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase activity. Appl Environ Microbiol 80:1132–1141PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Graves DJ, Hayakawa T, Horvitz RA, Beckman E, Krebs EG (1973) Studies on the subunit structure of trypsin-activated phosphorylase kinase. Biochemistry (Mosc) 12:580–585CrossRefGoogle Scholar
  70. 70.
    Potter RL, Taylor SS (1980) The structural domains of cAMP-dependent protein kinase I. Characterization of two sites of proteolytic cleavage and homologies to cAMP-dependent protein kinase II. J Biol Chem 255:9706–9712PubMedGoogle Scholar
  71. 71.
    Fontana A, de Laureto PP, Spolaore B, Frare E, Picotti P, Zambonin M (2004) Probing protein structure by limited proteolysis. Acta Biochim Pol 51:299–321PubMedGoogle Scholar
  72. 72.
    Scaloni A, Miraglia N, Orru S, Amodeo P, Motta A, Marino G, Pucci P (1998) Topology of the calmodulin-melittin complex. J Mol Biol 277:945–958PubMedCrossRefGoogle Scholar
  73. 73.
    Cohen SL, Ferre-D’Amare AR, Burley SK, Chait BT (1995) Probing the solution structure of the DNA-binding protein Max by a combination of proteolysis and mass spectrometry. Protein Sci 4:1088–1099PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Monti M, Pucci P (2006) Limited proteolysis mass spectrometry of protein complexes. In: Mass spectrometry of protein interactions. Wiley, Hoboken, pp 63–82CrossRefGoogle Scholar
  75. 75.
    Suckau D, Kohl J, Karwath G, Schneider K, Casaretto M, Bitter-Suermann D, Przybylski M (1990) Molecular epitope identification by limited proteolysis of an immobilized antigen-antibody complex and mass spectrometric peptide mapping. Proc Natl Acad Sci U S A 87:9848–9852PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Trempe MR, Carlson GM (1987) Phosphorylase kinase conformers. Detection by proteases. J Biol Chem 262:4333–4340PubMedGoogle Scholar
  77. 77.
    Trempe MR, Carlson GM, Hainfeld JF, Furcinitti PS, Wall JS (1986) Analyses of phosphorylase kinase by transmission and scanning transmission electron microscopy. J Biol Chem 261:2882–2889PubMedGoogle Scholar
  78. 78.
    Kemp BE, Pearson RB (1991) Intrasteric regulation of protein kinases and phosphatases. Biochim Biophys Acta 1094:67–76PubMedCrossRefGoogle Scholar
  79. 79.
    Kobe B, Kemp BE (1999) Active site-directed protein regulation. Nature 402:373–376PubMedCrossRefGoogle Scholar
  80. 80.
    Xu G, Chance MR (2005) Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting. Anal Chem 77:4549–4555PubMedCrossRefGoogle Scholar
  81. 81.
    Kiselar JG, Chance MR (2010) Future directions of structural mass spectrometry using hydroxyl radical footprinting. J Mass Spectrom 45:1373–1382PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhang H, Gau BC, Jones LM, Vidavsky I, Gross ML (2011) Fast photochemical oxidation of proteins for comparing structures of protein-ligand complexes: the calmodulin-peptide model system. Anal Chem 83:311–318PubMedCrossRefGoogle Scholar
  83. 83.
    Hanai R, Wang JC (1994) Protein footprinting by the combined use of reversible and irreversible lysine modifications. Proc Natl Acad Sci U S A 91:11904–11908PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Tu BP, Wang JC (1999) Protein footprinting at cysteines: probing ATP-modulated contacts in cysteine-substitution mutants of yeast DNA topoisomerase II. Proc Natl Acad Sci U S A 96:4862–4867PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Nadeau OW, Carlson GM (2005) Protein interactions captured by chemical cross-linking. In: Golemis E, Adams PD (eds) Protein-protein interactions : a molecular cloning manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 105–127Google Scholar
  86. 86.
    Nadeau OW (2006) Protein interaction analysis: chemical cross-linking. In: Ganten D, Ruckpaul K (eds) Encyclopedic reference of genomics and proteomics in molecular medicine. Springer, BerlinGoogle Scholar
  87. 87.
    Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Elsevier Academic Press, Amsterdam/BostonGoogle Scholar
  88. 88.
    Wong SS (1993) Chemistry of protein conjugation and cross-linking. CRC Press, Boca RatonGoogle Scholar
  89. 89.
    Nadeau OW, Lane LA, Xu D, Sage J, Priddy TS, Artigues A, Villar MT, Yang Q, Robinson CV, Zhang Y, Carlson GM (2012) Structure and location of the regulatory beta subunits in the (alphabetagammadelta)4 phosphorylase kinase complex. J Biol Chem 287:36651–36661PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Politis A, Schmidt C, Tjioe E, Sandercock AM, Lasker K, Gordiyenko Y, Russel D, Sali A, Robinson CV (2015) Topological models of heteromeric protein assemblies from mass spectrometry: application to the yeast eIF3:eIF5 complex. Chem Biol 22:117–128PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Trnka MJ, Burlingame AL (2010) Topographic studies of the GroEL-GroES chaperonin complex by chemical cross-linking using diformyl ethynylbenzene: the power of high resolution electron transfer dissociation for determination of both peptide sequences and their attachment sites. Mol Cell Proteomics 9:2306–2317PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Paramelle D, Miralles G, Subra G, Martinez J (2013) Chemical cross-linkers for protein structure studies by mass spectrometry. Proteomics 13:438–456PubMedCrossRefGoogle Scholar
  93. 93.
    Singh P, Panchaud A, Goodlett DR (2010) Chemical cross-linking and mass spectrometry as a low-resolution protein structure determination technique. Anal Chem 82:2636–2642PubMedCrossRefGoogle Scholar
  94. 94.
    Stengel F, Aebersold R, Robinson CV (2012) Joining forces: integrating proteomics and cross-linking with the mass spectrometry of intact complexes. Mol Cell Proteomics 11:R111.014027PubMedCrossRefGoogle Scholar
  95. 95.
    Chowdhury SM, Munske GR, Tang X, Bruce JE (2006) Collisionally activated dissociation and electron capture dissociation of several mass spectrometry-identifiable chemical cross-linkers. Anal Chem 78:8183–8193PubMedCrossRefGoogle Scholar
  96. 96.
    Tang X, Munske GR, Siems WF, Bruce JE (2005) Mass spectrometry identifiable cross-linking strategy for studying protein-protein interactions. Anal Chem 77:311–318PubMedCrossRefGoogle Scholar
  97. 97.
    Rostovtsev VV, Green LG, Fokin VV, Sharpless KB (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew Chem Int Ed Engl 41:2596–2599PubMedCrossRefGoogle Scholar
  98. 98.
    Chowdhury SM, Du X, Tolic N, Wu S, Moore RJ, Mayer MU, Smith RD, Adkins JN (2009) Identification of cross-linked peptides after click-based enrichment using sequential collision-induced dissociation and electron transfer dissociation tandem mass spectrometry. Anal Chem 81:5524–5532PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Vellucci D, Kao A, Kaake RM, Rychnovsky SD, Huang L (2010) Selective enrichment and identification of azide-tagged cross-linked peptides using chemical ligation and mass spectrometry. J Am Soc Mass Spectrom 21:1432–1445PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Nadeau OW, Wyckoff GJ, Paschall JE, Artigues A, Sage J, Villar MT, Carlson GM (2008) CrossSearch, a user-friendly search engine for detecting chemically cross-linked peptides in conjugated proteins. Mol Cell Proteomics 7:739–749PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Maiolica A, Cittaro D, Borsotti D, Sennels L, Ciferri C, Tarricone C, Musacchio A, Rappsilber J (2007) Structural analysis of multiprotein complexes by cross-linking, mass spectrometry, and database searching. Mol Cell Proteomics 6:2200–2211PubMedCrossRefGoogle Scholar
  102. 102.
    Hoopmann MR, Weisbrod CR, Bruce JE (2010) Improved strategies for rapid identification of chemically cross-linked peptides using protein interaction reporter technology. J Proteome Res 9:6323–6333PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ihling C, Falvo F, Kratochvil I, Sinz A, Schafer M (2015) Dissociation behavior of a bifunctional tempoactive ester reagent for peptide structure analysis by free radical initiated peptide sequencing (FRIPS) mass spectrometry. J Mass Spectrom 50:396–406PubMedCrossRefGoogle Scholar
  104. 104.
    Jedrychowski MP, Huttlin EL, Haas W, Sowa ME, Rad R, Gygi SP (2011) Evaluation of HCD- and CID-type fragmentation within their respective detection platforms for murine phosphoproteomics. Mol Cell Proteomics 10:M111.009910PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Fenyo D (1997) A software tool for the analysis of mass spectrometric disulfide mapping experiments. Comput Appl Biosci 13:617–618PubMedGoogle Scholar
  106. 106.
    Young MM, Tang N, Hempel JC, Oshiro CM, Taylor EW, Kuntz ID, Gibson BW, Dollinger G (2000) High throughput protein fold identification by using experimental constraints derived from intramolecular cross-links and mass spectrometry. Proc Natl Acad Sci U S A 97:5802–5806PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Peri S, Steen H, Pandey A (2001) GPMAW–a software tool for analyzing proteins and peptides. Trends Biochem Sci 26:687–689PubMedCrossRefGoogle Scholar
  108. 108.
    Taverner T, Hall NE, O’Hair RA, Simpson RJ (2002) Characterization of an antagonist interleukin-6 dimer by stable isotope labeling, cross-linking, and mass spectrometry. J Biol Chem 277:46487–46492PubMedCrossRefGoogle Scholar
  109. 109.
    Hernandez P, Gras R, Frey J, Appel RD (2003) Popitam: towards new heuristic strategies to improve protein identification from tandem mass spectrometry data. Proteomics 3:870–878PubMedCrossRefGoogle Scholar
  110. 110.
    Kruppa GH, Schoeniger J, Young MM (2003) A top down approach to protein structural studies using chemical cross-linking and Fourier transform mass spectrometry. Rapid Commun Mass Spectrom 17:155–162PubMedCrossRefGoogle Scholar
  111. 111.
    Kellersberger KA, Yu E, Kruppa GH, Young MM, Fabris D (2004) Top-down characterization of nucleic acids modified by structural probes using high-resolution tandem mass spectrometry and automated data interpretation. Anal Chem 76:2438–2445PubMedCrossRefGoogle Scholar
  112. 112.
    Tang Y, Chen Y, Lichti CF, Hall RA, Raney KD, Jennings SF (2005) CLPM: a cross-linked peptide mapping algorithm for mass spectrometric analysis. BMC Bioinf 6 Suppl 2:S9CrossRefGoogle Scholar
  113. 113.
    Seebacher J, Mallick P, Zhang N, Eddes JS, Aebersold R, Gelb MH (2006) Protein cross-linking analysis using mass spectrometry, isotope-coded cross-linkers, and integrated computational data processing. J Proteome Res 5:2270–2282PubMedCrossRefGoogle Scholar
  114. 114.
    de Koning LJ, Kasper PT, Back JW, Nessen MA, Vanrobaeys F, Van Beeumen J, Gherardi E, de Koster CG, de Jong L (2006) Computer-assisted mass spectrometric analysis of naturally occurring and artificially introduced cross-links in proteins and protein complexes. FEBS J 273:281–291PubMedCrossRefGoogle Scholar
  115. 115.
    Schnaible V, Wefing S, Resemann A, Suckau D, Bucker A, Wolf-Kummeth S, Hoffmann D (2002) Screening for disulfide bonds in proteins by MALDI in-source decay and LIFT-TOF/TOF-MS. Anal Chem 74:4980–4988PubMedCrossRefGoogle Scholar
  116. 116.
    Wefing S, Schnaible V, Hoffmann D (2006) SearchXLinks. A program for the identification of disulfide bonds in proteins from mass spectra. Anal Chem 78:1235–1241PubMedCrossRefGoogle Scholar
  117. 117.
    Gao Q, Xue S, Doneanu CE, Shaffer SA, Goodlett DR, Nelson SD (2006) Pro-CrossLink. Software tool for protein cross-linking and mass spectrometry. Anal Chem 78:2145–2149PubMedCrossRefGoogle Scholar
  118. 118.
    Lee YJ, Lackner LL, Nunnari JM, Phinney BS (2007) Shotgun cross-linking analysis for studying quaternary and tertiary protein structures. J Proteome Res 6:3908–3917PubMedCrossRefGoogle Scholar
  119. 119.
    Lee YJ (2009) Probability-based shotgun cross-linking sites analysis. J Am Soc Mass Spectrom 20:1896–1899PubMedCrossRefGoogle Scholar
  120. 120.
    Anderson GA, Tolic N, Tang X, Zheng C, Bruce JE (2007) Informatics strategies for large-scale novel cross-linking analysis. J Proteome Res 6:3412–3421PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Yu ET, Hawkins A, Kuntz ID, Rahn LA, Rothfuss A, Sale K, Young MM, Yang CL, Pancerella CM, Fabris D (2008) The collaboratory for MS3D: a new cyberinfrastructure for the structural elucidation of biological macromolecules and their assemblies using mass spectrometry-based approaches. J Proteome Res 7:4848–4857PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Panchaud A, Singh P, Shaffer SA, Goodlett DR (2010) xComb: a cross-linked peptide database approach to protein-protein interaction analysis. J Proteome Res 9:2508–2515PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Leitner A, Walzthoeni T, Aebersold R (2014) Lysine-specific chemical cross-linking of protein complexes and identification of cross-linking sites using LC-MS/MS and the xQuest/xProphet software pipeline. Nat Protoc 9:120–137PubMedCrossRefGoogle Scholar
  124. 124.
    Leitner A, Walzthoeni T, Kahraman A, Herzog F, Rinner O, Beck M, Aebersold R (2010) Probing native protein structures by chemical cross-linking, mass spectrometry, and bioinformatics. Mol Cell Proteomics 9:1634–1649PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Xu H, Hsu PH, Zhang L, Tsai MD, Freitas MA (2010) Database search algorithm for identification of intact cross-links in proteins and peptides using tandem mass spectrometry. J Proteome Res 9:3384–3393PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    McIlwain S, Draghicescu P, Singh P, Goodlett DR, Noble WS (2010) Detecting cross-linked peptides by searching against a database of cross-linked peptide pairs. J Proteome Res 9:2488–2495PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Chu F, Baker PR, Burlingame AL, Chalkley RJ (2010) Finding chimeras: a bioinformatics strategy for identification of cross-linked peptides. Mol Cell Proteomics 9:25–31PubMedCrossRefGoogle Scholar
  128. 128.
    Du X, Chowdhury SM, Manes NP, Wu S, Mayer MU, Adkins JN, Anderson GA, Smith RD (2011) Xlink-identifier: an automated data analysis platform for confident identifications of chemically cross-linked peptides using tandem mass spectrometry. J Proteome Res 10:923–931PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Rasmussen MI, Refsgaard JC, Peng L, Houen G, Hojrup P (2011) CrossWork: software-assisted identification of cross-linked peptides. J Proteome 74:1871–1883CrossRefGoogle Scholar
  130. 130.
    Gotze M, Pettelkau J, Schaks S, Bosse K, Ihling CH, Krauth F, Fritzsche R, Kuhn U, Sinz A (2012) StavroX–a software for analyzing crosslinked products in protein interaction studies. J Am Soc Mass Spectrom 23:76–87PubMedCrossRefGoogle Scholar
  131. 131.
    Yang B, Wu YJ, Zhu M, Fan SB, Lin J, Zhang K, Li S, Chi H, Li YX, Chen HF, Luo SK, Ding YH, Wang LH, Hao Z, Xiu LY, Chen S, Ye K, He SM, Dong MQ (2012) Identification of cross-linked peptides from complex samples. Nat Methods 9:904–906PubMedCrossRefGoogle Scholar
  132. 132.
    Li W, O’Neill HA, Wysocki VH (2012) SQID-XLink: implementation of an intensity-incorporated algorithm for cross-linked peptide identification. Bioinformatics 28:2548–2550PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Holding AN, Lamers MH, Stephens E, Skehel JM (2013) Hekate: software suite for the mass spectrometric analysis and three-dimensional visualization of cross-linked protein samples. J Proteome Res 12:5923–5933PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Jaiswal M, Crabtree N, Bauer MA, Hall R, Raney KD, Zybailov BL (2014) XLPM: efficient algorithm for the analysis of protein-protein contacts using chemical cross-linking mass spectrometry. BMC Bioinf 15 Suppl 11:S16CrossRefGoogle Scholar
  135. 135.
    Wang J, Anania VG, Knott J, Rush J, Lill JR, Bourne PE, Bandeira N (2014) Combinatorial approach for large-scale identification of linked peptides from tandem mass spectrometry spectra. Mol Cell Proteomics 13:1128–1136PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Mayne SL, Patterton HG (2014) AnchorMS: a bioinformatics tool to derive structural information from the mass spectra of cross-linked protein complexes. Bioinformatics 30:125–126PubMedCrossRefGoogle Scholar
  137. 137.
    Lima DB, de Lima TB, Balbuena TS, Neves-Ferreira AG, Barbosa VC, Gozzo FC, Carvalho PC (2015) SIM-XL: a powerful and user-friendly tool for peptide cross-linking analysis. J Proteomics 129:51PubMedCrossRefGoogle Scholar
  138. 138.
    Glatter T, Ludwig C, Ahrne E, Aebersold R, Heck AJ, Schmidt A (2012) Large-scale quantitative assessment of different in-solution protein digestion protocols reveals superior cleavage efficiency of tandem Lys-C/trypsin proteolysis over trypsin digestion. J Proteome Res 11:5145–5156PubMedCrossRefGoogle Scholar
  139. 139.
    Leon IR, Schwammle V, Jensen ON, Sprenger RR (2013) Quantitative assessment of in-solution digestion efficiency identifies optimal protocols for unbiased protein analysis. Mol Cell Proteomics 12:2992–3005PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Nomura E, Katsuta K, Ueda T, Toriyama M, Mori T, Inagaki N (2004) Acid-labile surfactant improves in-sodium dodecyl sulfate polyacrylamide gel protein digestion for matrix-assisted laser desorption/ionization mass spectrometric peptide mapping. J Mass Spectrom 39:202–207PubMedCrossRefGoogle Scholar
  141. 141.
    Wisniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359–362PubMedCrossRefGoogle Scholar
  142. 142.
    Hustoft HK, Reubsaet L, Greibrokk T, Lundanes E, Malerod H (2011) Critical assessment of accelerating trypsination methods. J Pharm Biomed Anal 56:1069–1078PubMedCrossRefGoogle Scholar
  143. 143.
    Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860PubMedCrossRefGoogle Scholar
  144. 144.
    Green NS, Reisler E, Houk KN (2001) Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers. Protein Sci 10:1293–1304PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Nadeau OW, Carlson GM (2002) Chemical cross-linking in studying protein-protein interactions. In: Golemis E (ed) Protein-protein interactions : a molecular cloning manual. Cold Spring Harbor Laboratory Press, New York, pp 75–91Google Scholar
  146. 146.
    Sobott F, Hernandez H, McCammon MG, Tito MA, Robinson CV (2002) A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Anal Chem 74:1402–1407PubMedCrossRefGoogle Scholar
  147. 147.
    Benesch JL, Robinson CV (2006) Mass spectrometry of macromolecular assemblies: preservation and dissociation. Curr Opin Struct Biol 16:245–251PubMedCrossRefGoogle Scholar
  148. 148.
    Benesch JL, Ruotolo BT, Simmons DA, Robinson CV (2007) Protein complexes in the gas phase: technology for structural genomics and proteomics. Chem Rev 107:3544–3567PubMedCrossRefGoogle Scholar
  149. 149.
    Hernandez H, Robinson CV (2001) Dynamic protein complexes: insights from mass spectrometry. J Biol Chem 276:46685–46688PubMedCrossRefGoogle Scholar
  150. 150.
    Hernandez H, Dziembowski A, Taverner T, Seraphin B, Robinson CV (2006) Subunit architecture of multimeric complexes isolated directly from cells. EMBO Rep 7:605–610PubMedPubMedCentralGoogle Scholar
  151. 151.
    Lane LA, Nadeau OW, Carlson GM, Robinson CV (2012) Mass spectrometry reveals differences in stability and subunit interactions between activated and nonactivated conformers of the (alphabetagammadelta)4 phosphorylase kinase complex. Mol Cell Proteomics 11:1768–1776PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Fitzgerald TJ, Carlson GM (1984) Activated states of phosphorylase kinase as detected by the chemical cross-linker 1,5-difluoro-2,4-dinitrobenzene. J Biol Chem 259:3266–3274PubMedGoogle Scholar
  153. 153.
    Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinf 9:40CrossRefGoogle Scholar
  154. 154.
    Herzog F, Kahraman A, Boehringer D, Mak R, Bracher A, Walzthoeni T, Leitner A, Beck M, Hartl FU, Ban N, Malmstrom L, Aebersold R (2012) Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 337:1348–1352PubMedCrossRefGoogle Scholar
  155. 155.
    Rappsilber J (2011) The beginning of a beautiful friendship: cross-linking/mass spectrometry and modelling of proteins and multi-protein complexes. J Struct Biol 173:530–540PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Schneidman-Duhovny D, Pellarin R, Sali A (2014) Uncertainty in integrative structural modeling. Curr Opin Struct Biol 28:96–104PubMedCrossRefGoogle Scholar
  157. 157.
    Zeng-Elmore X, Gao XZ, Pellarin R, Schneidman-Duhovny D, Zhang XJ, Kozacka KA, Tang Y, Sali A, Chalkley RJ, Cote RH, Chu F (2014) Molecular architecture of photoreceptor phosphodiesterase elucidated by chemical cross-linking and integrative modeling. J Mol Biol 426:3713–3728PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Antonio Artigues
    • 1
  • Owen W. Nadeau
    • 1
  • Mary Ashley Rimmer
    • 1
  • Maria T. Villar
    • 1
  • Xiuxia Du
    • 2
  • Aron W. Fenton
    • 1
  • Gerald M. Carlson
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations