Advertisement

Nanomedicines—A Scientific Toy or an Emerging Market?

  • Matthias G. WackerEmail author
Chapter

Abstract

In recent years, significant effort has been made in the development and synthesis of polymer nanoparticles for the targeted delivery of drugs. Although many of these nanocarriers have attracted the attention of the pharmaceutical industry, only a few of them have been approved so far. The growing knowledge of their interactions with biological surfaces enables an adoption of the unique properties of the nanoparticle to the physiological environment. The following section describes the criteria that need to be considered for the development and optimization of these versatile drug delivery systems and the requirements for their translation into novel nanomedicines .

Keywords

Nanocrystals Nanomedicines Industry Market Regulations Developability Drugability 

References

  1. Barenholz Y (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134PubMedCrossRefGoogle Scholar
  2. Beck RC, Pohlmann AR, Hoffmeister C, Gallas MR, Collnot E, Schaefer UF et al (2007) Dexamethasone-loaded nanoparticle-coated microparticles: correlation between in vitro drug release and drug transport across Caco-2 cell monolayers. Eur J Pharm Biopharm 67(1):18–30PubMedCrossRefGoogle Scholar
  3. Beyer S, Xie L, Grafe S, Vogel V, Dietrich K, Wiehe A et al (2014) Bridging laboratory and large scale production: preparation and in vitro-evaluation of photosensitizer-loaded nanocarrier devices for targeted drug delivery. Pharm Res 32(5):1714–1726Google Scholar
  4. Beyer S, Moosmann A, Kahnt AS, Ulshöfer T, Parnham MJ, Ferreirós N et al (2015) Drug release and targeting: the versatility of polymethacrylate nanoparticles for peroral administration revealed by using an optimized in vitro-toolbox. Pharm Res 32(12):3986–3998Google Scholar
  5. Bioalliance Pharma (2009) Doxorubicin Transdrug®: significant increased survival rate in patients with advanced hepatocellular carcinoma treated in a phase II clinical trial ParisGoogle Scholar
  6. Brandhonneur N, Chevanne F, Vie V, Frisch B, Primault R, Le Potier MF et al (2009) Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages. Eur J Pharm Sci 36(4–5):474–485PubMedCrossRefGoogle Scholar
  7. Butler JM, Dressman JB (2010) The developability classification system: application of biopharmaceutics concepts to formulation development. J Pharm Sci 99(12):4940–4954PubMedCrossRefGoogle Scholar
  8. Calatayud MP, Sanz B, Raffa V, Riggio C, Ibarra MR, Goya GF (2014) The effect of surface charge of functionalized FeO nanoparticles on protein adsorption and cell uptake. Biomaterials 35(24):6389–6399Google Scholar
  9. Csuhai E, Kangarlou S, Xiang TX, Ponta A, Bummer P, Choi D et al (2015) Determination of key parameters for a mechanism-based model to predict Doxorubicin release from actively loaded liposomes. J Pharm Sci 104(3):1087–1098PubMedCrossRefGoogle Scholar
  10. Dailey LA, Hernandez-Prieto R, Casas-Ferreira AM, Jones MC, Riffo-Vasquez Y, Rodriguez-Gonzalo E et al (2014) Adenosine monophosphate is elevated in the bronchoalveolar lavage fluid of mice with acute respiratory toxicity induced by nanoparticles with high surface hydrophobicity. NanotoxicologyGoogle Scholar
  11. das Neves J, Araujo F, Andrade F, Amiji M, Bahia MF, Sarmento B (2014) Biodistribution and pharmacokinetics of dapivirine-loaded nanoparticles after vaginal delivery in mice. Pharm Res 31(7):1834–1845PubMedCrossRefGoogle Scholar
  12. Das S, Suresh PK (2010) Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to Amphotericin B. Nanomedicine 7(2):242–247PubMedGoogle Scholar
  13. Dembri A, Montisci MJ, Gantier JC, Chacun H, Ponchel G (2001) Targeting of 3’-azido 3’-deoxythymidine (AZT)-loaded poly(isohexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm Res 18(4):467–473PubMedCrossRefGoogle Scholar
  14. Draz MS, Fang BA, Zhang P, Hu Z, Gu S, Weng KC et al (2014) Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 4(9):872–892PubMedPubMedCentralCrossRefGoogle Scholar
  15. EFSA Scientific Committee (2011) Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA J 9(5):2140–2176CrossRefGoogle Scholar
  16. Ensign LM, Cone R, Hanes J (2012) Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 64(6):557–570PubMedCrossRefGoogle Scholar
  17. European Medicines Agency (EMA) (2007) European public assessment report on Abraxane. In: (CHMP) CfMPfHUGoogle Scholar
  18. European Medicines Agency (EMA) (2013) Reflection paper on the data requirements for intravenous liposomal products developed with reference to an innovator liposomal product (EMA/CHMP/806058/2009/Rev. 02). In: Committee for medicinal products for human use (CHMP)Google Scholar
  19. European Medicines Agency (EMA) (2013) Reflection paper on surface coatings: general issues for consideration regarding parenteral administration of coated nanomedicine products (EMA/325027/2013). In: Committee for medicinal products for human use (CHMP)Google Scholar
  20. European Medicines Agency (EMA) (2013) Reflection paper on the data requirements for intravenous iron-based nano-colloidal products developed with reference to an innovator medicinal product. In: Committee for medicinal products for human use (CHMP)Google Scholar
  21. Food and Drug Administration (FDA) (2002) Liposome drug products—chemistry, manufacture, and controls; human pharmacokinetics and bioavailability; AND labeling documentation. In: Services USDoHaHGoogle Scholar
  22. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54(4):987–992PubMedGoogle Scholar
  23. Gaca S, Reichert S, Multhoff G, Wacker M, Hehlgans S, Botzler C et al (2013) Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells. J Control Release 172(1):201–206PubMedCrossRefGoogle Scholar
  24. Gao H, Zhang S, Cao S, Yang Z, Pang Z, Jiang X (2014) Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Mol Pharm 11(8):2755–2763Google Scholar
  25. Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 7:2PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37(13):1590–1598PubMedCrossRefGoogle Scholar
  27. Gido C, Langguth P, Kreuter J, Winter G, Woog H, Mutschler E (1993) Conventional versus novel conditions for the in vitro dissolution testing of parenteral slow release formulations: application to doxepin parenteral dosage forms. Pharmazie 48(10):764–769PubMedGoogle Scholar
  28. Gido C, Langguth P, Mutschler E (1994) Predictions of in vivo plasma concentrations from in vitro release kinetics: application to doxepin parenteral (i.m.) suspensions in lipophilic vehicles in dogs. Pharm Res 11(6):800–808PubMedCrossRefGoogle Scholar
  29. Jantratid E, Janssen N, Reppas C, Dressman JB (2008) Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res 25(7):1663–1676PubMedCrossRefGoogle Scholar
  30. Juenemann D, Jantratid E, Wagner C, Reppas C, Vertzoni M, Dressman JB (2010) Biorelevant in vitro dissolution testing of products containing micronized or nanosized fenofibrate with a view to predicting plasma profiles. Eur J Pharm Biopharm 77(2):257–264PubMedCrossRefGoogle Scholar
  31. Kaul G, Amiji M (2004) Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target 12(9–10):585–591PubMedPubMedCentralCrossRefGoogle Scholar
  32. Kratz F (2008) Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release 132(3):171–183PubMedCrossRefGoogle Scholar
  33. Kreuter J (2007) Nanoparticles–a historical perspective. Int J Pharm 331(1):1–10PubMedCrossRefGoogle Scholar
  34. Labarre D, Vauthier C, Chauvierre C, Petri B, Muller R, Chehimi MM (2005) Interactions of blood proteins with poly(isobutylcyanoacrylate) nanoparticles decorated with a polysaccharidic brush. Biomaterials 26(24):5075–5084PubMedCrossRefGoogle Scholar
  35. Lammers T, Kiessling F, Hennink WE, Storm G (2011) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161(2):175–187PubMedCrossRefGoogle Scholar
  36. Lartigue L, Wilhelm C, Servais J, Factor C, Dencausse A, Bacri JC et al (2012) Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano 6(3):2665–2678PubMedCrossRefGoogle Scholar
  37. Lautenschlager C, Schmidt C, Lehr CM, Fischer D, Stallmach A (2013) PEG-functionalized microparticles selectively target inflamed mucosa in inflammatory bowel disease. Eur J Pharm Biopharm 85(3):578–586PubMedCrossRefGoogle Scholar
  38. Lehmann AD, Daum N, Bur M, Lehr CM, Gehr P, Rothen-Rutishauser BM (2011) An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm 77(3):398–406PubMedCrossRefGoogle Scholar
  39. Leu D, Manthey B, Kreuter J, Speiser P, DeLuca PP (1984) Distribution and elimination of coated polymethyl [2-14C]methacrylate nanoparticles after intravenous injection in rats. J Pharm Sci 73(10):1433–1437PubMedCrossRefGoogle Scholar
  40. Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP (2002) Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm 240(1–2):95–102PubMedCrossRefGoogle Scholar
  41. Low K, Wacker M, Wagner S, Langer K, von Briesen H (2011) Targeted human serum albumin nanoparticles for specific uptake in EGFR-expressing colon carcinoma cells. Nanomedicine 7(4):454–463PubMedGoogle Scholar
  42. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61PubMedCrossRefGoogle Scholar
  43. Marques RCM, Loebenberg R, Almukainzi A (2011) Simulated biological fluids with possible application in dissolution testing. Dissolut Technol 18(3):15–28CrossRefGoogle Scholar
  44. Merisko-Liversidge E, Liversidge GG (2011) Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev 63(6):427–440PubMedCrossRefGoogle Scholar
  45. Merisko-Liversidge E, Sarpotdar P, Bruno J, Hajj S, Wei L, Peltier N et al (1996) Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm Res 13(2):272–278PubMedCrossRefGoogle Scholar
  46. Muller RH, Gohla S, Keck CM (2011) State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78(1):1–9PubMedCrossRefGoogle Scholar
  47. Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54(Suppl 1):S131–S155PubMedCrossRefGoogle Scholar
  48. Noyes A, Whitney W (1897) The rate of solution of solid substances in their own solutions. J Am Chem Soc 19:930–934CrossRefGoogle Scholar
  49. Ostwald W (1900) Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Zeitung für physikalische Chemie 34(4):495–503Google Scholar
  50. Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102PubMedCrossRefGoogle Scholar
  51. Pinco RG, Sullivan TM (2006) Regulation of pharmaceutical excipients. Excipient development for pharmaceutical, biotechnology, and drug delivery systems. CRC Press, Boca Raton, pp 37–50CrossRefGoogle Scholar
  52. Raber AS, Mittal A, Schafer J, Bakowsky U, Reichrath J, Vogt T et al (2014) Quantification of nanoparticle uptake into hair follicles in pig ear and human forearm. J Control Release 179:25–32PubMedCrossRefGoogle Scholar
  53. Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34(21):5163–5171PubMedPubMedCentralCrossRefGoogle Scholar
  54. Schleh C, Kreyling WG, Lehr CM (2014) Pulmonary surfactant is indispensable in order to simulate the in vivo situation. Part Fibre Toxicol 10:6CrossRefGoogle Scholar
  55. Schultheis B, Strumberg D, Santel A, Vank C, Gebhardt F, Keil O et al (2014) First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J Clin Oncol 32(36):4141–4148PubMedCrossRefGoogle Scholar
  56. Seidlitz A, Weitschies W (2012) In-vitro dissolution methods for controlled release parenterals and their applicability to drug-eluting stent testing. J Pharm Pharmacol 64(7):969–985PubMedCrossRefGoogle Scholar
  57. Sempf K, Arrey T, Gelperina S, Schorge T, Meyer B, Karas M et al (2013) Adsorption of plasma proteins on uncoated PLGA nanoparticles. Eur J Pharm Biopharm 85(1):53–60PubMedCrossRefGoogle Scholar
  58. Szebeni J, Alving CR, Rosivall L, Bunger R, Baranyi L, Bedocs P et al (2007) Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J Liposome Res 17(2):107–117PubMedCrossRefGoogle Scholar
  59. van de Waterbeemd H, Gifford E (2003) ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov 2(3):192–204PubMedCrossRefGoogle Scholar
  60. Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PLR, Hammond PT et al (2011) The effects of polymeric nanostructure shape on drug delivery. Adv Drug Deliv Rev 63(14–15):1228–1246PubMedCrossRefGoogle Scholar
  61. Villa Nova M, Janas C, Schmidt M, Ulshoefer T, Grafe S, Schiffmann S et al (2015) Nanocarriers for photodynamic therapy-rational formulation design and medium-scale manufacture. Int J Pharm 491(1–2):250–260PubMedCrossRefGoogle Scholar
  62. Wacker M (2013) Nanocarriers for intravenous injection–the long hard road to the market. Int J Pharm 457(1):50–62PubMedCrossRefGoogle Scholar
  63. Wacker MG (2014) Nanotherapeutics-product development along the “nanomaterial” discussion. J Pharm Sci 103(3):777–784PubMedCrossRefGoogle Scholar
  64. Wacker M, Zensi A, Kufleitner J, Ruff A, Schutz J, Stockburger T et al (2011) A toolbox for the upscaling of ethanolic human serum albumin (HSA) desolvation. Int J Pharm 414(1–2):225–232PubMedCrossRefGoogle Scholar
  65. Wagner V, Dullaart A, Bock AK, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217PubMedCrossRefGoogle Scholar
  66. Wagner S, Zensi A, Wien SL, Tschickardt SE, Maier W, Vogel T et al (2012) Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model. PLoS ONE 7(3):e32568PubMedPubMedCentralCrossRefGoogle Scholar
  67. Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D (2013) Stability of nanosuspensions in drug delivery. J Control Release 172(3):1126–1141PubMedCrossRefGoogle Scholar
  68. Zensi A, Begley D, Pontikis C, Legros C, Mihoreanu L, Buchel C et al (2010) Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain. J Drug Target 18(10):842–848PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Project Group for Translational Medicine and Pharmacology (TMP), Department of Pharmaceutical Technology and NanosciencesFraunhofer-Institute for Molecular Biology and Applied Ecology (IME)Frankfurt/MainGermany

Personalised recommendations