Advertisement

The Relationship Between Visual Website Complexity and a User’s Mental Workload: A NeuroIS Perspective

  • Ricardo Buettner
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 16)

Abstract

I report results from an experiment on the relationship between visual website complexity and users’ mental workload. Applying a pupillary based workload assessment as a NeuroIS methodology, I found indications that a balanced level of navigation complexity, i.e., the number of (sub)menus, in combination with a balanced level of information complexity, is the best choice from a user’s mental workload perspective.

Keywords

NeuroIS Eye-tracking Mental workload Pupil diameter IS complexity Website complexity Navigation complexity Information complexity 

Notes

Acknowledgements

I would like to thank Christiane Lange for laboratory assistance and the reviewers, who provided very helpful comments on the refinement of the paper. This research is funded by the German Federal Ministry of Education and Research (03FH055PX2).

References

  1. 1.
    Buettner, R.: Investigation of the relationship between visual website complexity and users’ mental workload: A NeuroIS perspective. In: Information Systems and Neuro Science, vol. 10 of LNISO, pp. 123–128. Gmunden, Austria (2015)Google Scholar
  2. 2.
    Wang, Q., Yang, S., Liu, M., Cao, Z., Ma, Q.: An eye-tracking study of website complexity from cognitive load perspective. Decis Support Syst 62, 1–10 (2014)CrossRefGoogle Scholar
  3. 3.
    Huang, M.-H.: Designing website attributes to induce experiential encounters. Comput. Hum. Behav. 19(4), 425–442 (2003)CrossRefGoogle Scholar
  4. 4.
    Stassen, H.G., Johannsen, G., Moray, N.: Internal representation, internal model, human performance model and mental workload. Automatica 26(4), 811–820 (1990)CrossRefGoogle Scholar
  5. 5.
    Johannsen, G., Levis, A.H., Stassen, H.G.: Theoretical problems in man-machine systems and their experimental validation. Automatica 30(2), 217–231 (1992)CrossRefGoogle Scholar
  6. 6.
    Buettner, R.: Analyzing mental workload states on the basis of the pupillary hippus. In: NeuroIS ’14 Proc., p. 52 (2014)Google Scholar
  7. 7.
    Buettner, R., Sauer, S., Maier, C., Eckhardt, A.: Towards ex ante prediction of user performance: A novel NeuroIS methodology based on real-time measurement of mental effort. In: HICSS-48 Proc., pp. 533–542 (2015)Google Scholar
  8. 8.
    de Guinea, A.O., Titah, R., Léger, P.-M.: Explicit and implicit antecedents of users’ behavioral beliefs in information systems: A neuropsychological investigation. J Manag Inform Syst 30(4), 179–210 (2014)CrossRefGoogle Scholar
  9. 9.
    Dimoka, A., Pavlou, P.A., Davis, F.D.: NeuroIS: The potential of cognitive neuroscience for information systems research. Inform Syst Res 22(4), 687–702 (2011)CrossRefGoogle Scholar
  10. 10.
    Dimoka, A., Banker, R.D., Benbasat, I., Davis, F.D., Dennis, A.R., Gefen, D., Gupta, A., Ischebeck, A., Kenning, P.H., Pavlou, P.A., Müller-Putz, G., Riedl, R., vom Brocke, J., Weber, B.: On the use of neurophysiological tools in IS research: Developing a research agenda for NeuroIS. MIS Q 36(3), 679–A19 (2012)Google Scholar
  11. 11.
    Riedl, R., Banker, R.D., Benbasat, I., Davis, F.D., Dennis, A.R., Dimoka, A., Gefen, D., Gupta, A., Ischebeck, A., Kenning, P., Müller-Putz, G., Pavlou, P.A., Straub, D.W., vom Brocke, J., Weber, B.: On the foundations of NeuroIS: Reflections on the Gmunden retreat 2009. Comm Assoc Inform Syst 27, 243–264 (2010)Google Scholar
  12. 12.
    Iqbal, S.T., Adamczyk, P.D., Zheng, X.S., Bailey, B.P.: Towards an index of opportunity: Understanding changes in mental workload during task execution. In: CHI ’05 Proc., pp. 311–320 (2005)Google Scholar
  13. 13.
    Bailey, B.P., Iqbal, S.T.: Understanding changes in mental workload during execution of goal-directed tasks and its application for interruption management. ACM Trans Comput Hum Interact 14(4), 1–28 (2008). Article 21CrossRefGoogle Scholar
  14. 14.
    Buettner, R.: Cognitive workload of humans using artificial intelligence systems: Towards objective measurement applying eye-tracking technology. In: KI 2013 Proc., ser. LNAI, vol. 8077, pp. 37–48 (2013)Google Scholar
  15. 15.
    Buettner, R., Daxenberger, B., Eckhardt, A., Maier, C.: Cognitive workload induced by information systems: Introducing an objective way of measuring based on pupillary diameter responses. In: Pre-ICIS HCI/MIS 2013 Proc., paper 20 (2013)Google Scholar
  16. 16.
    vom Brocke, J., Liang, T.-P.: Guidelines for neuroscience studies in information systems research. J Manag Inform Syst 30(4), 211–234 (2014)CrossRefGoogle Scholar
  17. 17.
    vom Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: On the importance of rigour in documenting the literature search process. In: ECIS ’09 Proc., pp. 2206–2217 (2009)Google Scholar
  18. 18.
    Goldinger, S.D., Papesh, M.H.: Pupil dilation reflects the creation and retrieval of memories. Curr Dir Psychol Sci 21(2), 90–95 (2012)CrossRefGoogle Scholar
  19. 19.
    Laeng, B., Sirois, S., Gredebäck, G.: Pupillometry: A window to the preconscious? Perspect Psychol Sci 7(1), 18–27 (2012)CrossRefGoogle Scholar
  20. 20.
    Duchowski, A.T.: Eye tracking methodology: Theory and practice, 2nd edn. Springer, London (2007)Google Scholar
  21. 21.
    Deng, L., Poole, M.S.: Affect in web interfaces: A study of the impacts of web page visual complexity and order. MIS Q 34(4), 711–A10 (2010)Google Scholar
  22. 22.
    Nadkarni, S., Gupta, R.: A task-based model of perceived website complexity. MIS Q 31(3), 501–524 (2007)Google Scholar
  23. 23.
    Hong, W., Thong, J.Y., Tam, K.Y.: The effects of information format and shopping task on consumers’ online shopping behavior: A cognitive fit perspective. J Manag Inform Syst 21(3), 149–184 (2004)Google Scholar
  24. 24.
    Eckhardt, A., Maier, C., Hsieh, J.J., Chuk, T., Chan, A.B., Hsiao, J.H., Buettner, R.: Objective measures of IS usage behavior under conditions of experience and pressure using eye fixation data. In: ICIS 2013 Proc. (2013)Google Scholar
  25. 25.
    Georges, V., Courtemanche, F., Sénécal, S., Baccino, T., Léger, P.-M., Frédette, M.: Measuring visual complexity using neurophysiological data. In: Information Systems and Neuro Science, vol. 10 of LNISO, pp. 207–212. Gmunden, Austria (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.FOM University of Applied Sciences, MIS-InstituteMunichGermany

Personalised recommendations