Clonal Evolution of Stem Cells in the Gastrointestinal Tract

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 908)

Abstract

The field of gastrointestinal epithelial stem cells is a rapidly developing area of adult stem cell research. The discovery of Lgr5+ intestinal stem cells has enabled us to study many hidden aspects of the biology of gastrointestinal adult stem cells. Marked by Lgr5 and Troy, several novel endodermal stem cells have been identified in the gastrointestinal tract. A precise working model of stem cell propagation, dynamics, and plasticity has been revealed by a genetic labeling method, termed lineage tracing. This chapter introduces the reidentification of crypt base columnar cells as Lgr5+ stem cells in the intestine. Subsequently, it will discuss dynamic clonal evolution and cellular plasticity in the intestinal stem cell zone, as well as in stem cell zones of stomach glands.

Keywords

Clonal evolution Cellular plasticity Intestinal Lgr5+ stem cells Intestinal stem cell niche Neutral competition Pylorus Lgr5+ stem cells Corpus Troy+ reserve stem cells 

References

  1. 1.
    He XC, Zhang J, Tong W-G, Tawfik O, Ross J, Scoville DH, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet. 2004;36:1117–21.CrossRefPubMedGoogle Scholar
  2. 2.
    Potten CS, Hume WJ, Reid P, Cairns J. The segregation of DNA in epithelial stem cells. Cell. 1978;15:899–906.CrossRefPubMedGoogle Scholar
  3. 3.
    Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat. 1974;141:461–79.CrossRefPubMedGoogle Scholar
  4. 4.
    Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. Am J Anat. 1974;141:537–61.CrossRefPubMedGoogle Scholar
  5. 5.
    Potten CS, Owen G, Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci. 2002;115:2381–8.PubMedGoogle Scholar
  6. 6.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature. 2011;469:415–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Cai C-L, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature. 2008;454:104–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Chen D, Livne-bar I, Vanderluit JL, Slack RS, Agochiya M, Bremner R. Cell-specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death-resistant cell-of-origin in retinoblastoma. Cancer Cell. 2004;5:539–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature. 2006;443:993–7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thompson H, Tucker AS. Dual origin of the epithelium of the mammalian middle ear. Science. 2013;339:1453–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Ruppel KM, Willison D, Kataoka H, Wang A, Zheng Y-W, Cornelissen I, et al. Essential role for Galpha13 in endothelial cells during embryonic development. Proc Natl Acad Sci U S A. 2005;102:8281–6.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Snippert HJ, Haegebarth A, Kasper M, Jaks V, van Es JH, Barker N, et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science. 2010;327:1385–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Méndez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira S. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ahn S, Joyner AL. Dynamic changes in the response of cells to positive hedgehog signaling during mouse limb patterning. Cell. 2004;118:505–16.CrossRefPubMedGoogle Scholar
  16. 16.
    Delacour A, Nepote V, Trumpp A, Herrera PL. Nestin expression in pancreatic exocrine cell lineages. Mech Dev. 2004;121:3–14.CrossRefPubMedGoogle Scholar
  17. 17.
    Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, et al. White fat progenitor cells reside in the adipose vasculature. Science. 2008;322:583–6.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature. 2005;437:894–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Feil R, Wagner J, Metzger D, Chambon P. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun. 1997;237:752–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Barker N, van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell. 2012;11:452–60.CrossRefPubMedGoogle Scholar
  21. 21.
    De Lau W, Kujala P, Schneeberger K, Middendorp S, Li VSW, Barker N, et al. Peyer’s patch M cells derived from Lgr5(+) stem cells require SpiB and are induced by RankL in cultured “miniguts”. Mol Cell Biol. 2012;32:3639–47.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S, et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol. 2011;192:767–80.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Barker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, et al. Lgr5(+ve) stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell. 2010;6:25–36.CrossRefPubMedGoogle Scholar
  24. 24.
    Fafilek B, Krausova M, Vojtechova M, Pospichalova V, Tumova L, Sloncova E, et al. Troy, a tumor necrosis factor receptor family member, interacts with lgr5 to inhibit wnt signaling in intestinal stem cells. Gastroenterology. 2013;144:381–91.CrossRefPubMedGoogle Scholar
  25. 25.
    Stange DE, Koo B-K, Huch M, Sibbel G, Basak O, Lyubimova A, et al. Differentiated troy(+) chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 2013;155:357–68.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon-Veenboer C, et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell. 2010;143:134–44.CrossRefPubMedGoogle Scholar
  27. 27.
    Kozar S, Morrissey E, Nicholson AM, van der Heijden M, Zecchini HI, Kemp R, et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell. 2013;13:626–33.CrossRefPubMedGoogle Scholar
  28. 28.
    Ritsma L, Ellenbroek SIJ, Zomer A, Snippert HJ, de Sauvage FJ, Simons BD, et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature. 2014;507:362–5.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, et al. Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology. 2011;140:1230–1240.e1–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Farin HF, Van Es JH, Clevers H. Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. Gastroenterology. 2012;143:1518–1529.e7.CrossRefPubMedGoogle Scholar
  31. 31.
    Kim T-H, Escudero S, Shivdasani RA. Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci U S A. 2012;109:3932–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Durand A, Donahue B, Peignon G, Letourneur F, Cagnard N, Slomianny C, et al. Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci U S A. 2012;109:8965–70.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yilmaz ÖH, Katajisto P, Lamming DW, Gültekin Y, Bauer-Rowe KE, Sengupta S, et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature. 2012;486:490–5.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Simons BD, Clevers H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell. 2011;145:851–62.CrossRefPubMedGoogle Scholar
  35. 35.
    Simons BD, Clevers H. Stem cell self-renewal in intestinal crypt. Exp Cell Res. 2011;317:2719–24.CrossRefPubMedGoogle Scholar
  36. 36.
    Snippert HJ, Schepers AG, van Es JH, Simons BD, Clevers H. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep. 2014;15:62–9.CrossRefPubMedGoogle Scholar
  37. 37.
    Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A, Buczacki S, et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science. 2013;342:995–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, Nature Publishing Group, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 2013;495:65–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee ANY, Gregorieff A, Nature Publishing Group, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 2012;14:1099–104.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lee ER, Trasler J, Dwivedi S, Leblond CP. Division of the mouse gastric mucosa into zymogenic and mucous regions on the basis of gland features. Am J Anat. 1982;164:187–207.CrossRefPubMedGoogle Scholar
  41. 41.
    Hattori T, Fujita S. Tritiated thymidine autoradiographic study on cellular migration in the gastric gland of the golden hamster. Cell Tissue Res. 1976;172:171–84.CrossRefPubMedGoogle Scholar
  42. 42.
    Leblond CP, Stevens CE, Bogoroch R. Histological localization of newly-formed desoxyribonucleic acid. Science. 1948;108:531–3.CrossRefPubMedGoogle Scholar
  43. 43.
    Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. V. Behavior of entero-endocrine and caveolated cells: general conclusions on cell kinetics in the oxyntic epithelium. Anat Rec. 1993;236:333–40.CrossRefPubMedGoogle Scholar
  44. 44.
    Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. III. Inward migration of neck cells followed by progressive transformation into zymogenic cells. Anat Rec. 1993;236:297–313.CrossRefPubMedGoogle Scholar
  45. 45.
    Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. II. Outward migration of pit cells. Anat Rec. 1993;236:280–96.CrossRefPubMedGoogle Scholar
  46. 46.
    Karam SM, Leblond CP. Dynamics of epithelial cells in the corpus of the mouse stomach. I. Identification of proliferative cell types and pinpointing of the stem cell. Anat Rec. 1993;236:259–79.CrossRefPubMedGoogle Scholar
  47. 47.
    Lee ER, Leblond CP. Dynamic histology of the antral epithelium in the mouse stomach: II. Ultrastructure and renewal of isthmal cells. Am J Anat. 1985;172:205–24.CrossRefPubMedGoogle Scholar
  48. 48.
    Bjerknes M, Cheng H. Multipotential stem cells in adult mouse gastric epithelium. Am J Physiol Gastrointest Liver Physiol. 2002;283:G767–77.CrossRefPubMedGoogle Scholar
  49. 49.
    Leushacke M, Ng A, Galle J, Loeffler M, Barker N. Lgr5+ gastric stem cells divide symmetrically to effect epithelial homeostasis in the pylorus. Cell Rep. 2013;5:349–56.CrossRefPubMedGoogle Scholar
  50. 50.
    Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, et al. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 2011;9:317–29.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Koo B-K, Clevers H. Stem cells marked by the R-spondin receptor LGR5. Gastroenterology. 2014;147:289–302.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Genetics, Wellcome Trust—Medical Research Council Stem Cell InstituteUniversity of CambridgeCambridgeUK

Personalised recommendations