Advertisement

Evolution of the BCL-2-Regulated Apoptotic Pathway

  • Abdel AouacheriaEmail author
  • Emilie Le Goff
  • Nelly Godefroy
  • Stephen Baghdiguian
Chapter

Abstract

The mitochondrion descends from a bacterium that, about two billion years ago, became endosymbiotic. This organelle represents a Pandora’s box whose opening triggers cytochrome-c release and apoptosis of cells from multicellular animals, which evolved much later, about six hundred million years ago. BCL-2 proteins, which are critical apoptosis regulators, were recruited at a certain time point in evolution to either lock or unlock this mitochondrial Pandora’s box. Hence, particularly intriguing is the issue of when and how the “BCL-2 proteins–mitochondria–apoptosis” triptych emerged. This chapter explains what it takes from an evolutionary perspective to evolve a BCL-2-regulated apoptotic pathway, by focusing on the events occurring upstream of mitochondria.

Keywords

Cell death Apoptosis BCL-2 BH3 Mitochondria 

Notes

Acknowledgements

The authors thank P. Pontarotti for the invitation to write this chapter. We are grateful to Dr. Valentine Rech De Laval for help with illustrations.

References

  1. Alavian KN, Li H, Collis L, Bonanni L, Zeng L, Sacchetti S, Lazrove E, Nabili P, Flaherty B, Graham M, Chen Y, Messerli SM, Mariggio MA, Rahner C, McNay E, Shore GC, Smith PJ, Hardwick JM, Jonas EA (2011) Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol 13(10):1224–1233. doi: 10.1038/ncb2330 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aouacheria A (2014) The BCL-2 database, Act 2: moving beyond dualism to diversity and pleiotropy. Cell Death Dis 5:e981. doi: 10.1038/cddis.2013.511 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aouacheria A, Arnaud E, Venet S, Lalle P, Gouy M, Rigal D, Gillet G (2001) Nrh, a human homologue of Nr-13 associates with Bcl-Xs and is an inhibitor of apoptosis. Oncogene 20(41):5846–5855. doi: 10.1038/sj.onc.1204740 CrossRefPubMedGoogle Scholar
  4. Aouacheria A, Brunet F, Gouy M (2005) Phylogenomics of life-or-death switches in multicellular animals: Bcl-2, BH3-Only, and BNip families of apoptotic regulators. Mol Biol Evol 22(12):2395–2416. doi: 10.1093/molbev/msi234 CrossRefPubMedGoogle Scholar
  5. Aouacheria A, Combet C, Tompa P, Hardwick JM (2015) Redefining the BH3 death domain as a short linear motif. Trends Biochem Sci 40(12):736–748. doi: 10.1016/j.tibs.2015.09.007 CrossRefPubMedGoogle Scholar
  6. Aouacheria A, Rech de Laval V, Combet C, Hardwick JM (2013) Evolution of Bcl-2 homology motifs: homology versus homoplasy. Trends Cell Biol 23(3):103–111. doi: 10.1016/j.tcb.2012.10.010 CrossRefPubMedGoogle Scholar
  7. Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. The EMBO J 22(17):4385–4399. doi: 10.1093/emboj/cdg423 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Autret A, Martin SJ (2009) Emerging role for members of the Bcl-2 family in mitochondrial morphogenesis. Mol Cell 36(3):355–363. doi: 10.1016/j.molcel.2009.10.011 CrossRefPubMedGoogle Scholar
  9. Bae J, Leo CP, Hsu SY, Hsueh AJ (2000) MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem 275(33):25255–25261. doi: 10.1074/jbc.M909826199 CrossRefPubMedGoogle Scholar
  10. Barrera-Vilarmau S, Obregon P, de Alba E (2011) Intrinsic order and disorder in the bcl-2 member harakiri: insights into its proapoptotic activity. PLoS ONE 6(6):e21413. doi: 10.1371/journal.pone.0021413 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bender CE, Fitzgerald P, Tait SW, Llambi F, McStay GP, Tupper DO, Pellettieri J, Sanchez Alvarado A, Salvesen GS, and Green DR (2012) Mitochondrial pathway of apoptosis is ancestral in metazoans. Proc Natl Acad Sci USA 109:4904–4909Google Scholar
  12. Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW (2008a) Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol 6(6):e147. doi: 10.1371/journal.pbio.0060147 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Billen LP, Shamas-Din A, Andrews DW (2008b) Bid: a Bax-like BH3 protein. Oncogene 27(Suppl 1):S93–104. doi: 10.1038/onc.2009.47 CrossRefPubMedGoogle Scholar
  14. Bleicken S, Wagner C, Garcia-Saez AJ (2013) Mechanistic differences in the membrane activity of Bax and Bcl-xL correlate with their opposing roles in apoptosis. Biophys J 104(2):421–431. doi: 10.1016/j.bpj.2012.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB (1993) bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74(4):597–608CrossRefPubMedGoogle Scholar
  16. Borner C, Martinou I, Mattmann C, Irmler M, Schaerer E, Martinou JC, Tschopp J (1994) The protein bcl-2 alpha does not require membrane attachment, but two conserved domains to suppress apoptosis. J cell biol 126(4):1059–1068CrossRefPubMedGoogle Scholar
  17. Bozhkov PV, Lam E (2011) Green death: revealing programmed cell death in plants. Cell Death Differ 18(8):1239–1240. doi: 10.1038/cdd.2011.86 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Buttner S, Eisenberg T, Carmona-Gutierrez D, Ruli D, Knauer H, Ruckenstuhl C, Sigrist C, Wissing S, Kollroser M, Frohlich KU, Sigrist S, Madeo F (2007) Endonuclease G regulates budding yeast life and death. Mol Cell 25(2):233–246. doi: 10.1016/j.molcel.2006.12.021 CrossRefPubMedGoogle Scholar
  19. Castellanos-Martinez S, Arteta D, Catarino S, Gestal C (2014) De novo transcriptome sequencing of the Octopus vulgaris hemocytes using Illumina RNA-Seq technology: response to the infection by the gastrointestinal parasite Aggregata octopiana. PLoS ONE 9(10):e107873. doi: 10.1371/journal.pone.0107873 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Charon C, Bruggeman Q, Thareau V, Henry Y (2012) Gene duplication within the Green Lineage: the case of TEL genes. J Exp Bot 63(14):5061–5077. doi: 10.1093/jxb/ers181 CrossRefPubMedGoogle Scholar
  21. Chen YB, Aon MA, Hsu YT, Soane L, Teng X, McCaffery JM, Cheng WC, Qi B, Li H, Alavian KN, Dayhoff-Brannigan M, Zou S, Pineda FJ, O’Rourke B, Ko YH, Pedersen PL, Kaczmarek LK, Jonas EA, Hardwick JM (2011) Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J cell biol 195(2):263–276. doi: 10.1083/jcb.201108059 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Chen ZX, Pervaiz S (2007) Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ 14(9):1617–1627. doi: 10.1038/sj.cdd.4402165 CrossRefPubMedGoogle Scholar
  23. Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278(5345):1966–1968CrossRefPubMedGoogle Scholar
  24. Cheung EC, Joza N, Steenaart NA, McClellan KA, Neuspiel M, McNamara S, MacLaurin JG, Rippstein P, Park DS, Shore GC, McBride HM, Penninger JM, Slack RS (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25(17):4061–4073. doi: 10.1038/sj.emboj.7601276 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96(5):615–624CrossRefPubMedGoogle Scholar
  26. Clavier A, Rincheval-Arnold A, Colin J, Mignotte B, Guenal I (2015) Apoptosis in Drosophila: which role for mitochondria? Apoptosis Int J Program Cell Death. doi: 10.1007/s10495-015-1209-y Google Scholar
  27. Clem RJ, Cheng EH, Karp CL, Kirsch DG, Ueno K, Takahashi A, Kastan MB, Griffin DE, Earnshaw WC, Veliuona MA, Hardwick JM (1998) Modulation of cell death by Bcl-XL through caspase interaction. Proc Natl Acad Sci USA 95(2):554–559CrossRefPubMedPubMedCentralGoogle Scholar
  28. Colussi PA, Quinn LM, Huang DC, Coombe M, Read SH, Richardson H, Kumar S (2000) Debcl, a proapoptotic Bcl-2 homologue, is a component of the Drosophila melanogaster cell death machinery. J Cell Biol 148:703–714Google Scholar
  29. Coultas L, Pellegrini M, Visvader JE, Lindeman GJ, Chen L, Adams JM, Huang DC, Strasser A (2003) Bfk: a novel weakly proapoptotic member of the Bcl-2 protein family with a BH3 and a BH2 region. Cell Death Differ 10(2):185–192. doi: 10.1038/sj.cdd.4401204 CrossRefPubMedGoogle Scholar
  30. Craxton A, Butterworth M, Harper N, Fairall L, Schwabe J, Ciechanover A, Cohen GM (2012) NOXA, a sensor of proteasome integrity, is degraded by 26S proteasomes by an ubiquitin-independent pathway that is blocked by MCL-1. Cell Death Differ 19(9):1424–1434. doi: 10.1038/cdd.2012.16 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23(16):2785–2796. doi: 10.1038/sj.onc.1207517 CrossRefPubMedGoogle Scholar
  32. Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15(1):49–63. doi: 10.1038/nrm3722 CrossRefPubMedGoogle Scholar
  33. Dallacqua RP, Bitondi MM (2014) Dimorphic ovary differentiation in honeybee (Apis mellifera) larvae involves caste-specific expression of homologs of ark and buffy cell death genes. PLoS ONE 9(5):e98088. doi: 10.1371/journal.pone.0098088 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Davids MS, Letai A (2012) Targeting the B-cell lymphoma/leukemia 2 family in cancer. J Clin Oncol: Official J Ame Soc Clin Oncol 30(25):3127–3135. doi: 10.1200/JCO.2011.37.0981 CrossRefGoogle Scholar
  35. Doerflinger M, Glab JA, Puthalakath H (2015) BH3-only proteins: a 20-year stock-take. FEBS J 282(6):1006–1016. doi: 10.1111/febs.13190 CrossRefPubMedGoogle Scholar
  36. Dunn SR, Phillips WS, Spatafora JW, Green DR, Weis VM (2006) Highly conserved caspase and Bcl-2 homologues from the sea anemone Aiptasia pallida: lower metazoans as models for the study of apoptosis evolution. J Mol Evol 63:95–107Google Scholar
  37. Dwyer DJ, Winkler JA (2013) Identification and characterization of programmed cell death markers in bacterial models. Methods Mol Biol 1004:145–159. doi: 10.1007/978-1-62703-383-1_11 CrossRefPubMedGoogle Scholar
  38. Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, Neutzner A, Tjandra N, Youle RJ (2011) Bcl-x(L) retrotranslocates bax from the mitochondria into the cytosol. Cell 145(1):104–116. doi: 10.1016/j.cell.2011.02.034 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Estevez-Calvar N, Romero A, Figueras A, Novoa B (2013) Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis. PloS one. 8:e61502Google Scholar
  40. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi: 10.1080/01926230701320337 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Fan C, Chen Y, Long M (2008) Recurrent tandem gene duplication gave rise to functionally divergent genes in drosophila. Mol Biol Evol 25(7):1451–1458. doi: 10.1093/molbev/msn089 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Garrido C, Kroemer G (2004) Life’s smile, death’s grin: vital functions of apoptosis-executing proteins. Curr Opin Cell Biol 16(6):639–646. doi: 10.1016/j.ceb.2004.09.008 CrossRefPubMedGoogle Scholar
  43. Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, Abrescia NG, Alderton D, Owens RJ, Stuart DI, Smith GL, Grimes JM (2008) Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. PLoS Pathog 4(8):e1000128. doi: 10.1371/journal.ppat.1000128 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gross A (2006) BID as a double agent in cell life and death. Cell Cycle 5(6):582–584CrossRefPubMedGoogle Scholar
  45. Guillemin Y, Lalle P, Gillet G, Guerin JF, Hamamah S, Aouacheria A (2009) Oocytes and early embryos selectively express the survival factor BCL2L10. J Mol Med (Berl) 87(9):923–940. doi: 10.1007/s00109-009-0495-7 CrossRefGoogle Scholar
  46. Guillemin Y, Lopez J, Gimenez D, Fuertes G, Valero JG, Blum L, Gonzalo P, Salgado J, Girard-Egrot A, Aouacheria A (2010) Active fragments from pro- and antiapoptotic BCL-2 proteins have distinct membrane behavior reflecting their functional divergence. PLoS ONE 5(2):e9066. doi: 10.1371/journal.pone.0009066 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, Okada H, Calzascia T, Jang Y, You-Ten A, Yeh WC, Ohashi P, Wang X, Mak TW (2005) Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 121(4):579–591. doi: 10.1016/j.cell.2005.03.016 CrossRefPubMedGoogle Scholar
  48. Hardwick JM, Soane L (2013) Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol 5(2). doi: 10.1101/cshperspect.a008722
  49. Hengartner MO, Horvitz HR (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76(4):665–676CrossRefPubMedGoogle Scholar
  50. Hinds MG, Smits C, Fredericks-Short R, Risk JM, Bailey M, Huang DC, Day CL (2007) Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Cell Death Differ 14(1):128–136. doi: 10.1038/sj.cdd.4401934 CrossRefPubMedGoogle Scholar
  51. Hollville E, Carroll RG, Cullen SP, Martin SJ (2014) Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol Cell 55(3):451–466. doi: 10.1016/j.molcel.2014.06.001 CrossRefPubMedGoogle Scholar
  52. Huang KJ, Ku CC, Lehman IR (2006) Endonuclease G: a role for the enzyme in recombination and cellular proliferation. Proc Natl Acad Sci USA 103(24):8995–9000. doi: 10.1073/pnas.0603445103 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Inohara N, Gourley TS, Carrio R, Muniz M, Merino J, Garcia I, Koseki T, Hu Y, Chen S, Nunez G (1998) Diva, a Bcl-2 homologue that binds directly to Apaf-1 and induces BH3-independent cell death. J Biol Chem 273(49):32479–32486CrossRefPubMedGoogle Scholar
  54. Jensen SA, Calvert AE, Volpert G, Kouri FM, Hurley LA, Luciano JP, Wu Y, Chalastanis A, Futerman AH, Stegh AH (2014) Bcl2L13 is a ceramide synthase inhibitor in glioblastoma. Proc Natl Acad Sci USA 111(15):5682–5687. doi: 10.1073/pnas.1316700111 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443(7112):658–662. doi: 10.1038/nature05111 CrossRefPubMedGoogle Scholar
  56. Ke N, Godzik A, Reed JC (2001) Bcl-B, a novel Bcl-2 family member that differentially binds and regulates Bax and Bak. J Biol Chem 276(16):12481–12484. doi: 10.1074/jbc.C000871200 CrossRefPubMedGoogle Scholar
  57. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, Barr PJ (1995) Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374(6524):736–739. doi: 10.1038/374736a0 CrossRefPubMedGoogle Scholar
  59. King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451(7180):783–788. doi: 10.1038/nature06617 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ko JK, Choi KH, Pan Z, Lin P, Weisleder N, Kim CW, Ma J (2007) The tail-anchoring domain of Bfl1 and HCCS1 targets mitochondrial membrane permeability to induce apoptosis. J Cell Sci 120(Pt 16):2912–2923. doi: 10.1242/jcs.006197 CrossRefPubMedGoogle Scholar
  61. Kratz E, Eimon PM, Mukhyala K, Stern H, Zha J, Strasser A, Hart R, Ashkenazi A (2006) Functional characterization of the Bcl-2 gene family in the zebrafish. Cell Death Differ 13(10):1631–1640. doi: 10.1038/sj.cdd.4402016 CrossRefPubMedGoogle Scholar
  62. Kucharczak JF, Simmons MJ, Duckett CS, Gelinas C (2005) Constitutive proteasome-mediated turnover of Bfl-1/A1 and its processing in response to TNF receptor activation in FL5.12 pro-B cells convert it into a prodeath factor. Cell Death Differ 12(9):1225–1239. doi: 10.1038/sj.cdd.4401684 CrossRefPubMedGoogle Scholar
  63. Kvitt H, Rosenfeld H, Zandbank K, Tchernov C (2011) Regulation of apoptotic pathways by Stylophora pistillata (Anthozoa, Pocilloporidae) to survive thermal stress and bleaching. PloS one. 6:e28665.Google Scholar
  64. Lasi M, Pauly B, Schmidt N, Cikala M, Stiening B, Kasbauer T, Zenner G, Popp T, Wagner A, Knapp RT, Huber AH, Grunert M, Soding J, David CN, Bottger A (2010) The molecular cell death machinery in the simple cnidarian hydra includes an expanded caspase family and pro- and anti-apoptotic Bcl-2 proteins. Cell Res 20(7):812–825. doi: 10.1038/cr.2010.66 CrossRefPubMedGoogle Scholar
  65. Laulier C, Lopez BS (2012) The secret life of Bcl-2: apoptosis-independent inhibition of DNA repair by Bcl-2 family members. Mutat Res 751(2):247–257. doi: 10.1016/j.mrrev.2012.05.002 CrossRefPubMedGoogle Scholar
  66. Lee EF, Clarke OB, Evangelista M, Feng Z, Speed TP, Tchoubrieva EB, Strasser A, Kalinna BH, Colman PM, Fairlie WD (2011) Discovery and molecular characterization of a Bcl-2-regulated cell death pathway in schistosomes. Proc Natl Acad Sci USA 108:6999–7003Google Scholar
  67. Lee EF, Dewson G, Evangelista M, Pettikiriarachchi A, Gold GJ, Zhu H, Colman PM, Fairlie WD (2014) The functional differences between pro-survival and pro-apoptotic B cell lymphoma 2 (Bcl-2) proteins depend on structural differences in their Bcl-2 homology 3 (BH3) domains. J Biol Chem 289(52):36001–36017. doi: 10.1074/jbc.M114.610758 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Lee LC, Hunter JJ, Mujeeb A, Turck C, Parslow TG (1996) Evidence for alpha-helical conformation of an essential N-terminal region in the human Bcl2 protein. J Biol Chem 271(38):23284–23288CrossRefPubMedGoogle Scholar
  69. Lee R, Chen J, Matthews CP, McDougall JK, Neiman PE (2001) Characterization of NR13-related human cell death regulator, Boo/Diva, in normal and cancer tissues. Biochim Biophys Acta 1520(3):187–194CrossRefPubMedGoogle Scholar
  70. Lee Y, Whang I, Lee S, Menike U, Oh C, Kang DH, Heo GJ, Lee J, De Zoysa M (2013) Two molluscan BCL-2 family members from Manila clam, Ruditapes philippinarum: molecular characterization and immune responses. Fish Shellfish Immu 34:1628–1634Google Scholar
  71. Lewis J, Oyler GA, Ueno K, Fannjiang YR, Chau BN, Vornov J, Korsmeyer SJ, Zou S, Hardwick JM (1999) Inhibition of virus-induced neuronal apoptosis by Bax. Nat Med 5(7):832–835. doi: 10.1038/10556 CrossRefPubMedGoogle Scholar
  72. Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR (2011) A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 44(4):517–531. doi: 10.1016/j.molcel.2011.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Lorenzo HK, Susin SA (2004) Mitochondrial effectors in caspase-independent cell death. FEBS Lett 557(1–3):14–20CrossRefPubMedGoogle Scholar
  74. Madeo F, Frohlich E, Frohlich KU (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J cell biol 139(3):729–734CrossRefPubMedPubMedCentralGoogle Scholar
  75. McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D (1999) Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96(5):625–634CrossRefPubMedGoogle Scholar
  76. Michels J, O’Neill JW, Dallman CL, Mouzakiti A, Habens F, Brimmell M, Zhang KY, Craig RW, Marcusson EG, Johnson PW, Packham G (2004) Mcl-1 is required for Akata6 B-lymphoma cell survival and is converted to a cell death molecule by efficient caspase-mediated cleavage. Oncogene 23(28):4818–4827. doi: 10.1038/sj.onc.1207648 CrossRefPubMedGoogle Scholar
  77. Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381(6580):335–341. doi: 10.1038/381335a0 CrossRefPubMedGoogle Scholar
  78. Murakawa T, Yamaguchi O, Hashimoto A, Hikoso S, Takeda T, Oka T, Yasui H, Ueda H, Akazawa Y, Nakayama H, Taneike M, Misaka T, Omiya S, Shah AM, Yamamoto A, Nishida K, Ohsumi Y, Okamoto K, Sakata Y, Otsu K (2015) Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6:7527. doi: 10.1038/ncomms8527 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Neidel S, Maluquer de Motes C, Mansur DS, Strnadova P, Smith GL, Graham SC (2015) Vaccinia virus protein A49 is an unexpected member of the B-cell Lymphoma (Bcl)-2 protein family. J Biol Chem 290(10):5991–6002. doi: 10.1074/jbc.M114.624650 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Pan C, Hu YF, Yi HS, Song J, Wang L, Pan MH, Lu C (2014) Role of Bmbuffy in hydroxycamptothecine-induced apoptosis in BmN-SWU1 cells of the silkworm, Bombyx mori. Biochem Bioph Res Co 447:237–243Google Scholar
  81. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122(6):927–939. doi: 10.1016/j.cell.2005.07.002 CrossRefPubMedGoogle Scholar
  82. Perciavalle RM, Stewart DP, Koss B, Lynch J, Milasta S, Bathina M, Temirov J, Cleland MM, Pelletier S, Schuetz JD, Youle RJ, Green DR, Opferman JT (2012) Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 14(6):575–583. doi: 10.1038/ncb2488 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Petros AM, Nettesheim DG, Wang Y, Olejniczak ET, Meadows RP, Mack J, Swift K, Matayoshi ED, Zhang H, Thompson CB, Fesik SW (2000) Rationale for Bcl-xL/Bad peptide complex formation from structure, mutagenesis, and biophysical studies. Protein Sci: Publ Protein Soc 9(12):2528–2534. doi: 10.1110/ps.9.12.2528 CrossRefGoogle Scholar
  84. Pinton P, Rizzuto R (2006) Bcl-2 and Ca2 + homeostasis in the endoplasmic reticulum. Cell Death Differ 13(8):1409–1418. doi: 10.1038/sj.cdd.4401960 CrossRefPubMedGoogle Scholar
  85. Porter AG, Urbano AG (2006) Does apoptosis-inducing factor (AIF) have both life and death functions in cells? BioEssays: News Rev Mol Cell Dev Biol 28(8):834–843. doi: 10.1002/bies.20444 CrossRefGoogle Scholar
  86. Qi H, Miao G, Li L, Que H, Zhang G (2015) Identification and functional characterization of two Bcl-2 family protein genes in Zhikong scallop Chlamys farreri. Fish Shellfish Immun 44:147–155Google Scholar
  87. Quinn L, Coombe M, Mills K, Daish T, Colussi P, Kumar S, Richardson H (2003) Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J 22:3568–3579Google Scholar
  88. Rech de Laval V, Deleage G, Aouacheria A, Combet C (2014) BCL2DB: database of BCL-2 family members and BH3-only proteins. Database: J Biol Databases Curation 2014: bau013. doi: 10.1093/database/bau013
  89. Reed JC (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ 13(8):1378–1386. doi: 10.1038/sj.cdd.4401975 CrossRefPubMedGoogle Scholar
  90. Robertson AJ, Croce J, Carbonneau S, Voronina E, Miranda E, McClay DR, Coffman JA. 2006. The genomic underpinnings of apoptosis in Strongylocentrotus purpuratus. Dev Biol 300:321–334Google Scholar
  91. Rogers JM, Steward A, Clarke J (2013) Folding and binding of an intrinsically disordered protein: fast, but not diffusion-limited. J Am Chem Soc 135(4):1415–1422. doi: 10.1021/ja309527h CrossRefPubMedPubMedCentralGoogle Scholar
  92. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23(16):2861–2874. doi: 10.1038/sj.onc.1207523 CrossRefPubMedGoogle Scholar
  93. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW (2011) H3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta 4:508–520. doi: 10.1016/j.bbamcr.2010.11.024 CrossRefGoogle Scholar
  94. Song Q, Kuang Y, Dixit VM, Vincenz C (1999) Boo, a novel negative regulator of cell death, interacts with Apaf-1. EMBO J 18(1):167–178. doi: 10.1093/emboj/18.1.167 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Sorrentino L, Calogero AM, Pandini V, Vanoni MA, Sevrioukova IF, Aliverti A (2015) Key role of the adenylate moiety and integrity of the adenylate-binding site for the NAD(+)/H binding to mitochondrial apoptosis-inducing factor. Biochemistry 54(47):6996–7009. doi: 10.1021/acs.biochem.5b00898 CrossRefPubMedGoogle Scholar
  96. Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS (2008) The Trichoplax genome and the nature of placozoans. Nature 454(7207):955–960. doi: 10.1038/nature07191 CrossRefPubMedGoogle Scholar
  97. Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466(7307):720–726. doi: 10.1038/nature09201 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Stegh AH, DePinho RA (2011) Beyond effector caspase inhibition: Bcl2L12 neutralizes p53 signaling in glioblastoma. Cell Cycle 10(1):33–38CrossRefPubMedPubMedCentralGoogle Scholar
  99. Subburaj Y, Cosentino K, Axmann M, Pedrueza-Villalmanzo E, Hermann E, Bleicken S, Spatz J, Garcia-Saez AJ (2015) Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nature Commun 6:8042. doi: 10.1038/ncomms9042 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Suga H, Chen Z, de Mendoza A, Sebe-Pedros A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sanchez-Pons N, Torruella G, Derelle R, Manning G, Lang BF, Russ C, Haas BJ, Roger AJ, Nusbaum C, Ruiz-Trillo I (2013) The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325. doi: 10.1038/ncomms3325 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Tait SW, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb perspect biol 5(9). doi: 10.1101/cshperspect.a008706
  102. Terajima D, Shida K, Takada N, Kasuya A, Rokhsar D, Satoh N, Satake M, Wang HG (2003) Identification of candidate genes encoding the core components of the cell death machinery in the Ciona intestinalis genome. Cell Death Differ 10(6):749–753. doi: 10.1038/sj.cdd.4401223 CrossRefPubMedGoogle Scholar
  103. Tischner D, Villunger A (2012) Bcl-G acquitted of murder! Cell Death Dis 3:e405. doi: 10.1038/cddis.2012.147 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23(23):4679–4689. doi: 10.1038/sj.emboj.7600461 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Volkmann N, Marassi FM, Newmeyer DD, Hanein D (2014) The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ 21(2):206–215. doi: 10.1038/cdd.2013.153 CrossRefPubMedGoogle Scholar
  106. Wang X, Bathina M, Lynch J, Koss B, Calabrese C, Frase S, Schuetz JD, Rehg JE, Opferman JT (2013) Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev 27(12):1351–1364. doi: 10.1101/gad.215855.113 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Westphal D, Kluck RM, Dewson G (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 21(2):196–205. doi: 10.1038/cdd.2013.139 CrossRefPubMedGoogle Scholar
  108. Wiens M, Belikov SI, Kaluzhnaya OV, Schroder HC, Hamer B, Perovic-Ottstadt S, Borejko A, Luthringer B, Muller IM, Muller WE (2006) Axial (apical-basal) expression of pro-apoptotic and pro-survival genes in the lake baikal demosponge Lubomirskia baicalensis. DNA Cell Biol 25:152–164Google Scholar
  109. Wiens M, Diehl-Seifert B, Muller WE (2001) Sponge Bcl-2 homologous protein (BHP2-GC) confers distinct stress resistance to human HEK-293 cells. Cell Death Differ 8(9):887–898. doi: 10.1038/sj.cdd.4400906 CrossRefPubMedGoogle Scholar
  110. Wiens M, Krasko A, Muller CI, Muller WE (2000) Molecular evolution of apoptotic pathways: cloning of key domains from sponges (Bcl-2 homology domains and death domains) and their phylogenetic relationships. J Mol Evol 50(6):520–531PubMedGoogle Scholar
  111. Xiang Z, Qu F, Wang F, Xiao S, Jun L, Zhang Y, Yu Z (2015) ChBax/Bak as key regulators of the mitochondrial apoptotic pathway: cloned and characterized in Crassostrea hongkongensis. Fish Shellfish Immun. 42:225–232Google Scholar
  112. Xue D, Horvitz HR (1997) Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature 390(6657):305–308. doi: 10.1038/36889 CrossRefPubMedGoogle Scholar
  113. Yan N, Gu L, Kokel D, Chai J, Li W, Han A, Chen L, Xue D, Shi Y (2004) Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Mol Cell 15(6):999–1006. doi: 10.1016/j.molcel.2004.08.022 CrossRefPubMedGoogle Scholar
  114. Zhang H, Holzgreve W, De Geyter C (2001) Bcl2-L-10, a novel anti-apoptotic member of the Bcl-2 family, blocks apoptosis in the mitochondria death pathway but not in the death receptor pathway. Hum Mol Genet 10(21):2329–2339CrossRefPubMedGoogle Scholar
  115. Zhang JY, Pan MH, Sun ZY, Huang SJ, Yu ZS, Liu D, Zhao DH, Lu C (2010) The genomic underpinnings of apoptosis in the silkworm. Bombyx mori BMC genomics 11:611. doi: 10.1186/1471-2164-11-611 PubMedGoogle Scholar
  116. Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8(2):357–366CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Abdel Aouacheria
    • 1
    Email author
  • Emilie Le Goff
    • 1
  • Nelly Godefroy
    • 1
  • Stephen Baghdiguian
    • 1
  1. 1.ISEM - Institut Des Sciences de L’Evolution de MontpellierUMR 5554, Université de Montpellier, CNRS, IRD, CIRAD, EPHEMontpellierFrance

Personalised recommendations