Advertisement

Background on Multiobjective Optimization for Controller Tuning

  • Gilberto Reynoso Meza
  • Xavier Blasco Ferragud
  • Javier Sanchis Saez
  • Juan Manuel Herrero Durá
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 85)

Abstract

In this chapter a background on multiobjective optimization and a review on multiobjective optimization design procedures within the context of control systems and the controller tuning problem are provided. Focus is given on multiobjective problems where an analysis of the Pareto front is required, in order to select the most preferable design alternative for the control problem at hand.

Keywords

Design Concept Pareto Front Multiobjective Optimization Fuzzy Controller Model Predictive Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Algoul S, Alam M, Hossain M, Majumder M (2011) Multi-objective optimal chemotherapy control model for cancer treatment. Med Biol Eng Comput 49:51–65. doi: 10.1007/s11517-010-0678-y CrossRefGoogle Scholar
  2. 2.
    Aslam T, Ng A (2010) Multi-objective optimization for supply chain management: a literature review and new development. In: 2010 8th international conference on supply chain management and information systems (SCMIS) (Oct 2010), pp 1 –8Google Scholar
  3. 3.
    Åström K, Hägglund T (2001) The future of PID control. Control Eng Pract 9(11):1163–1175CrossRefGoogle Scholar
  4. 4.
    Åström KJ, Hägglund T (2005) Advanced PID Control. ISA Instrum Syst Autom Soc Res Triangle Park, NC 27709Google Scholar
  5. 5.
    Batista L, Campelo F, Guimar£es F, Ramrez J (2011) Pareto cone \(\epsilon \)-dominance: improving convergence and diversity in multiobjective evolutionary algorithms. In: Takahashi R, Deb K, Wanner E, Greco S (eds) Evolutionary multi-criterion optimization vol. 6576 of Lecture notes in computer science. Springer, Heidelberg, pp 76–90. doi: 10.1007/978-3-642-19893-9-6
  6. 6.
    Bemporad A, noz de la Peña DM (2009) Multiobjective model predictive control. Automatica 45(12):2823–2830Google Scholar
  7. 7.
    Beyer H-G, Sendhoff B (2007) Robust optimization - a comprehensive survey. Comput Meth Appl Mech Eng 196(33–34):3190–3218MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Blasco X, Herrero J, Sanchis J, Martínez M (2008) A new graphical visualization of n-dimensional pareto front for decision-making in multiobjective optimization. Inf Sci 178(20):3908–3924MATHCrossRefGoogle Scholar
  9. 9.
    Bonissone P, Subbu R, Lizzi J (2009) Multicriteria decision making (MCDM): a framework for research and applications. IEEE Comput Intell Mag 4(3):48 –61 (2009)Google Scholar
  10. 10.
    Branke J, Schmeck H, Deb K, Reddy SM (2004) Parallelizing multi-objective evolutionary algorithms: cone separation. In: Congress on evolutionary computation, 2004. CEC2004 (June 2004), vol 2, pp 1952–1957Google Scholar
  11. 11.
    Chen Z, Yuan X, Ji B, Wang P, Tian H (2014) Design of a fractional order PID controller for hydraulic turbine regulating system using chaotic non-dominated sorting genetic algorithm II. Energy Convers Manag 84:390–404CrossRefGoogle Scholar
  12. 12.
    Chipperfield A, Bica B, Fleming P (2002) Fuzzy scheduling control of a gas turbine aero-engine: a multiobjective approach. IEEE Trans Indus Electron 49(3):536–548Google Scholar
  13. 13.
    Chuk OD, Kuchen BR (2011) Supervisory control of flotation columns using multi-objective optimization. Miner Eng 24(14):1545–1555CrossRefGoogle Scholar
  14. 14.
    Coello C (2000) Handling preferences in evolutionary multiobjective optimization: a survey. In: Proceedings of the 2000 congress on evolutionary computation, vol 1, pp 30–37Google Scholar
  15. 15.
    Coello C (2011) An introduction to multi-objective particle swarm optimizers. In: Gaspar-Cunha A, Takahashi R, Schaefer G, Costa L (eds) Soft computing in industrial applications, vol 96 of Advances in intelligent and soft computing. Springer, Heidelberg, pp 3–12. doi: 10.1007/978-3-642-20505-7_1
  16. 16.
    Coello CAC (2002) Theorical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Meth Appl Mech Eng 191:1245–1287MATHCrossRefGoogle Scholar
  17. 17.
    Coello CAC, Lamont GB (2004) Applications of multi-objective evolutionary algorithms. In: Advances in natural computation, vol 1. World Scientific PublishingGoogle Scholar
  18. 18.
    Coello CAC, Lamont GB, Veldhuizen DAV (2007) Multi-criteria decision making. In: Evolutionary algorithms for solving multi-objective problems. Genetic and evolutionary computation series. Springer US, pp 515–545Google Scholar
  19. 19.
    Coello CAC., Veldhuizen DV, Lamont G (2002) Evolutionary algorithms for solving multi-objective problems. Kluwer Academic PressGoogle Scholar
  20. 20.
    Coello Coello C (2006) Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput Intellig Magaz 1(1):28–36Google Scholar
  21. 21.
    Coello Coello C (2011) Evolutionary multi-objective optimization: basic concepts and some applications in pattern recognition. In: Martnez-Trinidad J, Carrasco-Ochoa J, Ben-Youssef Brants C, Hancock E (eds.) Pattern recognition, vol 6718 of Lecture notes in computer science. Springer, Heidelberg, pp 22–33. doi: 10.1007/978-3-642-21587-2_3
  22. 22.
    Corne DW, Knowles JD (2007) Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Proceedings of the 9th annual conference on genetic and evolutionary computation (New York, NY, USA, 2007), GECCO ’07, ACM, pp 773–780Google Scholar
  23. 23.
    Cruz C, González JR, Pelta DA (2011) Optimization in dynamic environments: a survey on problems, methods and measures. Soft Comput 15:1427–1448CrossRefGoogle Scholar
  24. 24.
    Das I, Dennis J (1998) Normal-boundary intersection: a new method for generating the pareto surface in non-linear multicriteria optimization problems. SIAM J Optim 8:631–657MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Das S, Das S, Pan I (2013) Multi-objective optimization framework for networked predictive controller design. ISA Trans 52(1):56–77CrossRefGoogle Scholar
  26. 26.
    Das S, Maity S, Qu B-Y, Suganthan P (2011) Real-parameter evolutionary multimodal optimization - a survey of the state-of-the-art. Swarm Evol Comput 1(2):71–88CrossRefGoogle Scholar
  27. 27.
    Das S, Mullick SS, Suganthan P (2016) Recent advances in differential evolution an updated survey. Swarm Evol Comput 27:1–30CrossRefGoogle Scholar
  28. 28.
    Das S, Suganthan PN (2010) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 99:1–28Google Scholar
  29. 29.
    Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Meth Appl Mech Eng 186(2–4):311–338MATHCrossRefGoogle Scholar
  30. 30.
    Deb K (2012) Advances in evolutionary multi-objective optimization. In: Fraser G, Teixeira de Souza J (eds) Search based software engineering, vol 7515 of Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 1–26Google Scholar
  31. 31.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):124–141CrossRefGoogle Scholar
  32. 32.
    Deb K, Saha A (2002) Multimodal optimization using a bi-objective evolutionary algorithm. Evol Comput 27–62Google Scholar
  33. 33.
    Dorigo M, Sttzle T (2010) Ant colony optimization: overview and recent advances. In: Gendreau M, Potvin J-Y (eds) Handbook of metaheuristics, vol 146 of International series in operations research & management science. Springer US, pp 227–263Google Scholar
  34. 34.
    Efstratiadis A, Koutsoyiannis D (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrol Sci J 55(1):58–78CrossRefGoogle Scholar
  35. 35.
    Fadaee M, Radzi M (2012) Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: a review. Renew Sustain Energy Rev 16(5):3364–3369CrossRefGoogle Scholar
  36. 36.
    Farina M, Deb K, Amato P (2004) Dynamic multiobjective optimization problems: test cases, approximations, and applications. IEEE Trans Evol Comput 8(5):425–442MATHCrossRefGoogle Scholar
  37. 37.
    Fazendeiro P, de Oliveira J, Pedrycz W (2007) A multiobjective design of a patient and anaesthetist-friendly neuromuscular blockade controller. IEEE Trans Biomed Eng 54(9):1667–1678Google Scholar
  38. 38.
    Fazlollahi S, Mandel P, Becker G, Maréchal F (2012) Methods for multi-objective investment and operating optimization of complex energy systems. Energy 45(1):12–22CrossRefGoogle Scholar
  39. 39.
    Fazzolar M, Alcalá R, Nojima Y, Ishibuchi H, Herrera F (2013) A review of the application of multi-objective evolutionary fuzzy systems: current status and further directions. IEEE Trans Fuzzy Syst 21(1):45–65Google Scholar
  40. 40.
    Feng G (2006) A survey on analysis and design of model-based fuzzy control systems. IEEE Trans Fuzzy Syst 14(5):676–697Google Scholar
  41. 41.
    Figueira J, Greco S, Ehrgott M (2005) Multiple criteria decision analysis: state of the art surveys. Springer International SeriesGoogle Scholar
  42. 42.
    Fister I Jr, Yang, X-S, Brest J (2013) A comprehensive review of firefly algorithms. Swarm Evol Comput 13:34–46Google Scholar
  43. 43.
    Fleming P, Purshouse R (2002) Evolutionary algorithms in control systems engineering: a survey. Control Eng Pract 10:1223–1241CrossRefGoogle Scholar
  44. 44.
    Fonseca C, Fleming P (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms-I: a unified formulation. IEEE Trans Systems, Man Cybern Part A: Syst Humans 28(1):26–37Google Scholar
  45. 45.
    Fonseca C, Fleming P (1998) Multiobjective optimization and multiple constraint handling with evolutionary algorithms-II: application example. IEEE Trans Systems, Man Cybern Part A: Syst Humans 28(1):38–47Google Scholar
  46. 46.
    Gacto M, Alcalá R, Herrera F (2012) A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems. Appl Intell 36:330–347. doi: 10.1007/s10489-010-0264-x CrossRefGoogle Scholar
  47. 47.
    Garca JJV, Garay VG, Gordo EI, Fano FA, Sukia ML (2012) Intelligent multi-objective nonlinear model predictive control (iMO-NMPC): towards the on-line optimization of highly complex control problems. Expert Syst Appl 39(7):6527–6540CrossRefGoogle Scholar
  48. 48.
    Gong W, Cai Z, Zhu L (2009) An efficient multiobjective. Differential Evolution algorithm for engineering design. Struct Multidisciplinary Optim 38:137–157. doi: 10.1007/s00158-008-0269-9 CrossRefGoogle Scholar
  49. 49.
    Hajiloo A, Nariman-zadeh N, Moeini A (2012) Pareto optimal robust design of fractional-order PID controllers for systems with probabilistic uncertainties. Mechatronics 22(6):788–801CrossRefGoogle Scholar
  50. 50.
    Harik G, Lobo F, Goldberg D (1999) The compact genetic algorithm. IEEE Trans Evol Comput 3(4):287–297Google Scholar
  51. 51.
    Hernández-Daz AG, Santana-Quintero LV, Coello CAC, Molina J (2007) Pareto-adaptive \(\epsilon \)-dominance. Evol Comput 4:493–517CrossRefGoogle Scholar
  52. 52.
    Herrero J, Martínez M, Sanchis J, Blasco X (2007) Well-distributed Pareto front by using the \(\epsilon \)-MOGA evolutionary algorithm. In: Computational and ambient intelligence, vol LNCS 4507. Springer-Verlag, pp 292–299Google Scholar
  53. 53.
    Herreros A, Baeyens E, Perán JR (2002) Design of PID-type controllers using multiobjective genetic algorithms. ISA Trans 41(4):457–472CrossRefGoogle Scholar
  54. 54.
    Herreros A, Baeyens E, Perán JR (2002) MRCD: a genetic algorithm for multiobjective robust control design. Eng Appl Artif Intell 15:285–301CrossRefGoogle Scholar
  55. 55.
    Houska B, Ferreau HJ, Diehl M (2011) ACADO toolkit an open source framework for automatic control and dynamic optimization. Optim Control Appl Meth 32(3):298–312MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Hsu C-H, Juang C-F (2013) Multi-objective continuous-ant-colony-optimized fc for robot wall-following control. Comput Intell Mag IEEE 8(3):28–40CrossRefGoogle Scholar
  57. 57.
    Huang L, Wang N, Zhao J-H (2008) Multiobjective optimization for controller design. Acta Automatica Sinica 34(4):472–477CrossRefGoogle Scholar
  58. 58.
    Huang V, Qin A, Deb K, Zitzler E, Suganthan P, Liang J, Preuss M, Huband S (2007) Problem definitions for performance assessment on multi-objective optimization algorithms. Nanyang Technological University, Singapore, Tech. repGoogle Scholar
  59. 59.
    Hung M-H, Shu L-S, Ho S-J, Hwang S-F, Ho S-Y (2008) A novel intelligent multiobjective simulated annealing algorithm for designing robust PID controllers. IEEE Trans Syst Man Cybern Part A: Syst Humans 38(2):319–330Google Scholar
  60. 60.
    Inselberg A (1985) The plane with parallel coordinates. Visual Comput 1:69–91MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. In: CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on Evolutionary Computation, 2008 (June 2008), pp 2419–2426Google Scholar
  62. 62.
    Jamali A, Hajiloo A, Nariman-zadeh N (2010) Reliability-based robust pareto design of linear state feedback controllers using a multi-objective uniform-diversity genetic algorithm (MUGA). Expert Syst Appl 37(1):401–413CrossRefGoogle Scholar
  63. 63.
    Kalaivani L, Subburaj P, Iruthayarajan MW (2013) Speed control of switched reluctance motor with torque ripple reduction using non-dominated sorting genetic algorithm (nsga-ii). Int J Electr Power Energy Syst 53:69–77CrossRefGoogle Scholar
  64. 64.
    Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2012) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 1–37Google Scholar
  65. 65.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, vol 4, pp 1942–1948Google Scholar
  66. 66.
    Kim H-S, Roschke PN (2006) Fuzzy control of base-isolation system using multi-objective genetic algorithm. Comput-Aided Civil Infrastruct Eng 21(6):436–449CrossRefGoogle Scholar
  67. 67.
    Knowles J, Thiele L, Zitzler E (2014) A tutorial on the performance assessment of stochastic multiobjective optimizers. Tech. Rep. TIK report No. 214, Computer Engineering and networks laboratory. ETH Zurich, 2006Google Scholar
  68. 68.
    Kollat JB, Reed P (2007) A framework for visually interactive decision-making and design using evolutionary multi-objective optimization (VIDEO). Environ Modell Softw 22(12):1691–1704CrossRefGoogle Scholar
  69. 69.
    Konak A, Coit DW, Smith AE (2006) Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Safety 91(9):992–1007. Special Issue - Genetic Algorithms and ReliabilityGoogle Scholar
  70. 70.
    Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evol Comput 3:263–282CrossRefGoogle Scholar
  71. 71.
    Leiva MC, Rojas JD (2015) New tuning method for pi controllers based on pareto-optimal criterion with robustness constraint. IEEE Latin America Trans 13(2):434–440Google Scholar
  72. 72.
    Liu H, Lee S, Kim M, Shi H, Kim JT, Wasewar KL, Yoo C (2013) Multi-objective optimization of indoor air quality control and energy consumption minimization in a subway ventilation system. Energy Build 66:553–561CrossRefGoogle Scholar
  73. 73.
    Lotov A, Miettinen K (2008) Visualizing the pareto frontier. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization, vol 5252 of Lecture notes in computer science. Springer, Heidelberg, pp 213–243Google Scholar
  74. 74.
    Lozano M, Molina D, Herrera F (2011) Soft computing: special issue on scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems, vol 15. Springer-VerlagGoogle Scholar
  75. 75.
    Lygoe R, Cary M, Fleming P (2010) A many-objective optimisation decision-making process applied to automotive diesel engine calibration. In: Deb K, Bhattacharya A, Chakraborti N, Chakroborty P, Das S, Dutta J, Gupta S, Jain A, Aggarwal V, Branke J, Louis S, Tan K (eds) Simulated evolution and learning, vol 6457 of Lecture notes in computer science. Springer, Heidelberg, pp 638–646. doi: 10.1007/978-3-642-17298-4_72
  76. 76.
    Mahmoodabadi M, Taherkhorsandi M, Bagheri A (2014) Pareto design of state feedback tracking control of a biped robot via multiobjective pso in comparison with sigma method and genetic algorithms: Modified nsgaii and matlabs toolbox. Scientific World JGoogle Scholar
  77. 77.
    Mallipeddi R, Suganthan P (2009) Problem definitions and evaluation criteria for the CEC 2010 competition on constrained real-parameter optimization. Nanyang Technological University, Singapore, Tech. repGoogle Scholar
  78. 78.
    Mallipeddi R, Suganthan P (2010) Ensemble of constraint handling techniques. IEEE Trans Evol Comput 14(4):561–579Google Scholar
  79. 79.
    Mansouri SA, Gallear D, Askariazad MH (2012) Decision support for build-to-order supply chain management through multiobjective optimization. Int J Prod Econ 135(1):24–36CrossRefGoogle Scholar
  80. 80.
    Marinaki M, Marinakis Y, Stavroulakis G (2011) Fuzzy control optimized by a multi-objective particle swarm optimization algorithm for vibration suppression of smart structures. Struct Multidisciplinary Optim 43:29–42. doi: 10.1007/s00158-010-0552-4 MathSciNetMATHCrossRefGoogle Scholar
  81. 81.
    Marler R, Arora J (2004) Survey of multi-objective optimization methods for engineering. Struct Multidisciplinary Optim 26:369–395MathSciNetMATHCrossRefGoogle Scholar
  82. 82.
    Martínez M, Herrero J, Sanchis J, Blasco X, García-Nieto S (2009) Applied Pareto multi-objective optimization by stochastic solvers. Eng Appl Artif Intell 22:455–465CrossRefGoogle Scholar
  83. 83.
    Martins JRRA, Lambe AB (2013) Multidisciplinary design optimization: a survey of architectures. AIAA J 51(9):2049–2075CrossRefGoogle Scholar
  84. 84.
    Mattson CA, Messac A (2005) Pareto frontier based concept selection under uncertainty, with visualization. Optim Eng 6:85–115MathSciNetMATHCrossRefGoogle Scholar
  85. 85.
    Meeuse F, Tousain RL (2002) Closed-loop controllability analysis of process designs: application to distillation column design. Comput Chem Eng 26(4–5):641–647CrossRefGoogle Scholar
  86. 86.
    Messac A, Ismail-Yahaya A, Mattson C (2003) The normalized normal constraint method for generating the pareto frontier. Struct Multidisciplinary Optim 25:86–98MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    Messac A, Mattson C (2002) Generating well-distributed sets of pareto points for engineering design using physical programming. Optim Eng 3:431–450. doi: 10.1023/A:1021179727569 MATHCrossRefGoogle Scholar
  88. 88.
    Metaxiotis K, Liagkouras K (2012) Multiobjective evolutionary algorithms for portfolio management: a comprehensive literature review. Expert Syst Appl 39(14):11685–11698CrossRefGoogle Scholar
  89. 89.
    Mezura-Montes E, Coello CAC (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol Comput 1(4):173–194CrossRefGoogle Scholar
  90. 90.
    Mezura-Montes E, Reyes-Sierra M, Coello C (2008) Multi-objective optimization using differential evolution: a survey of the state-of-the-art. Adv Differ Evol SCI 143:173–196CrossRefGoogle Scholar
  91. 91.
    Miettinen KM (1998) Nonlinear multiobjective optimization. Kluwer Academic PublishersGoogle Scholar
  92. 92.
    Mininno E, Neri F, Cupertino F, Naso D (2011) Compact differential evolution. IEEE Trans Evol Comput 15(1):32–54CrossRefGoogle Scholar
  93. 93.
    Mohan BC, Baskaran R (2012) A survey: ant colony optimization based recent research and implementation on several engineering domain. Expert Syst Appl 39(4):4618–4627CrossRefGoogle Scholar
  94. 94.
    Molina-Cristóbal A, Griffin I, Fleming P, Owens D (2006) Linear matrix inequialities and evolutionary optimization in multiobjective control. Int J Syst Sci 37(8):513–522MATHCrossRefGoogle Scholar
  95. 95.
    Moscato P, Cotta C (2010) A modern introduction to memetic algorithms. In: Gendreau M, Potvin J-Y (eds) Handbook of metaheuristics, vol 146 International series in operations research & management science. Springer US, pp 141–183Google Scholar
  96. 96.
    Munro M, Aouni B (2012) Group decision makers’ preferences modelling within the goal programming model: an overview and a typology. J Multi-Criteria Dec Anal 19(3–4):169–184CrossRefGoogle Scholar
  97. 97.
    MZavala V, Flores-Tlacuahuac A (2012) Stability of multiobjective predictive control: an utopia-tracking approach. Automatica 48(10):2627–2632Google Scholar
  98. 98.
    Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol Comput 2:1–14CrossRefGoogle Scholar
  99. 99.
    Nikmanesh E, Hariri O, Shams H, Fasihozaman M (2016) Pareto design of load frequency control for interconnected power systems based on multi-objective uniform diversity genetic algorithm (muga). Int J Electric Power Energy Syst 80:333–346CrossRefGoogle Scholar
  100. 100.
    Pan I, Das S (2013) Frequency domain design of fractional order PID controller for AVR system using chaotic multi-objective optimization. Int J Electric Power Energy Syst 51:106–118CrossRefGoogle Scholar
  101. 101.
    Pan I, Das S (2015) Fractional-order load-frequency control of interconnected power systems using chaotic multi-objective optimization. Appl Soft Comput 29:328–344MathSciNetCrossRefGoogle Scholar
  102. 102.
    Panda S, Yegireddy NK (2013) Automatic generation control of multi-area power system using multi-objective non-dominated sorting genetic algorithm-ii. Int J Electric Power Energy Syst 53:54–63CrossRefGoogle Scholar
  103. 103.
    Podlubny I (1999) Fractional-order systems and pi/sup /spl lambda//d/sup /spl mu//-controllers. IEEE Trans Autom Control 44(1):208–214Google Scholar
  104. 104.
    Purshouse R, Fleming P (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans Evol Comput 11(6):770–784CrossRefGoogle Scholar
  105. 105.
    Ramrez-Arias A, Rodrguez F, Guzmán J, Berenguel M (2012) Multiobjective hierarchical control architecture for greenhouse crop growth. Automatica 48(3):490–498MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Rao JS, Tiwari R (2009) Design optimization of double-acting hybrid magnetic thrust bearings with control integration using multi-objective evolutionary algorithms. Mechatronics 19(6):945–964CrossRefGoogle Scholar
  107. 107.
    Reed P, Hadka D, Herman J, Kasprzyk J, Kollat J (2013) Evolutionary multiobjective optimization in water resources: the past, present, and future. Adv Water Res 51(1):438–456CrossRefGoogle Scholar
  108. 108.
    Reynoso-Meza G, Blasco X, Sanchis J (2009) Multi-objective design of PID controllers for the control benchmark 2008–2009 (in spanish). Revista Iberoamericana de Automática e Informática Industrial 6(4):93–103CrossRefGoogle Scholar
  109. 109.
    Reynoso-Meza G, Blasco X, Sanchis J, Herrero JM (2013) Comparison of design concepts in multi-criteria decision-making using level diagrams. Inf Sci 221:124–141MathSciNetMATHCrossRefGoogle Scholar
  110. 110.
    Reynoso-Meza G, García-Nieto S, Sanchis J, Blasco X (2013) Controller tuning using multiobjective optimization algorithms: a global tuning framework. IEEE Trans Control Syst Technol 21(2):445–458CrossRefGoogle Scholar
  111. 111.
    Reynoso-Meza G, Sanchis J, Blasco X, Freire RZ (2016) Evolutionary multi-objective optimisation with preferences for multivariable PI controller tuning. Expert Syst Appl 51:120–133CrossRefGoogle Scholar
  112. 112.
    Reynoso-Meza G, Sanchis J, Blasco X, Herrero JM (2012) Multiobjective evolutionary algortihms for multivariable PI controller tuning. Expert Syst Appl 39:7895–7907CrossRefGoogle Scholar
  113. 113.
    Reynoso-Meza G, Sanchis J, Blasco X, Martínez M (2010) Multiobjective design of continuous controllers using differential evolution and spherical pruning. In: Chio CD, Cagnoni S, Cotta C, Eber M, Ekárt A, Esparcia-Alcaráz AI, Goh CK, Merelo J, Neri F, Preuss M, Togelius J, Yannakakis GN (eds) Applications of evolutionary computation, Part I (2010) vol LNCS 6024, Springer-Verlag, pp 532–541Google Scholar
  114. 114.
    Reynoso-Meza G, Sanchis J, Blasco X, Martínez M (2016) Preference driven multi-objective optimization design procedure for industrial controller tuning. Inf Sci 339:108–131CrossRefGoogle Scholar
  115. 115.
    Reynoso-Meza G, Sanchis J, Blasco X, Martínez M Controller tuning using evolutionary multi-objective optimisation: current trends and applications. Control Eng Pract (20XX) (Under revision)Google Scholar
  116. 116.
    Sanchis J, Martínez M, Blasco X, Salcedo JV (2008) A new perspective on multiobjective optimization by enhanced normalized normal constraint method. Struct Multidisciplinary Optim 36:537–546CrossRefGoogle Scholar
  117. 117.
    Santana-Quintero L, Montaño A, Coello C (2010) A review of techniques for handling expensive functions in evolutionary multi-objective optimization. In: Tenne Y, Goh C-K (eds) Computational intelligence in expensive optimization problems, vol 2 of Adaptation learning and optimization. Springer, Heidelberg, pp 29–59Google Scholar
  118. 118.
    Shaikh PH, Nor NBM, Nallagownden P, Elamvazuthi I, Ibrahim T (2016) Intelligent multi-objective control and management for smart energy efficient buildings. Int J Electric Power Energy Syst 74:403–409CrossRefGoogle Scholar
  119. 119.
    Sidhartha Panda (2011) Multi-objective PID controller tuning for a facts-based damping stabilizer using non-dominated sorting genetic algorithm-II. Int J Electr Power Energy Syst 33(7):1296–1308Google Scholar
  120. 120.
    Singh H, Isaacs A, Ray T (2011) A Pareto corner search evolutionary algorithm and dimensionality reduction in many-objective optimization problems. IEEE Trans Evol Comput 15(4):539–556CrossRefGoogle Scholar
  121. 121.
    Snchez HS, Vilanova R (2013) Multiobjective tuning of pi controller using the nnc method: simplified problem definition and guidelines for decision making. In: 2013 IEEE 18th conference on emerging technologies factory automation (ETFA) (Sept 2013), pp 1–8Google Scholar
  122. 122.
    Srinivas M, Patnaik L (1994) Genetic algorithms: a survey. Computer 27(6):17–26Google Scholar
  123. 123.
    Srinivasan S, Ramakrishnan S (2011) Evolutionary multi objective optimization for rule mining: a review. Artif Intell Rev 36:205–248. doi: 10.1007/s10462-011-9212-3 CrossRefGoogle Scholar
  124. 124.
    Stengel RF, Marrison CI (1992) Robustness of solutions to a benchmark control problem. J Guid Control Dyn 15:1060–1067MathSciNetMATHCrossRefGoogle Scholar
  125. 125.
    Stewart G, Samad T (2011) Cross-application perspectives: application and market requirements. In: Samad T, Annaswamy A (eds) The impact of control technology. IEEE Control Systems Society, pp 95–100Google Scholar
  126. 126.
    Stewart P, Gladwin D, Fleming P (2007) Multiobjective analysis for the design and control of an electromagnetic valve actuator. Proc Inst Mech Eng Part D: J Autom Eng 221:567–577CrossRefGoogle Scholar
  127. 127.
    Stewart P, Stone D, Fleming P (2004) Design of robust fuzzy-logic control systems by multi-objective evolutionary methods with hardware in the loop. Eng Appl Artif Intell 17(3):275–284CrossRefGoogle Scholar
  128. 128.
    Storn R, Price K (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359MathSciNetMATHCrossRefGoogle Scholar
  129. 129.
    Sun Y, Zhang C, Gao L, Wang X (2011) Multi-objective optimization algorithms for flow shop scheduling problem: a review and prospects. Int J Adv Manuf Technol 55:723–739. doi: 10.1007/s00170-010-3094-4 CrossRefGoogle Scholar
  130. 130.
    Tan W, Liu J, Fang F, Chen Y (2004) Tuning of PID controllers for boiler-turbine units. ISA Trans 43(4):571–583CrossRefGoogle Scholar
  131. 131.
    Tavakoli S, Griffin I, Fleming P (2007) Multi-objective optimization approach to the PI tuning problem. In: Proceedings of the IEEE congress on evolutionary computation (CEC2007), pp 3165–3171Google Scholar
  132. 132.
    Vallerio M, Hufkens J, Impe JV, Logist F (2015) An interactive decision-support system for multi-objective optimization of nonlinear dynamic processes with uncertainty. Expert Syst Appl 42(21):7710–7731CrossRefGoogle Scholar
  133. 133.
    Vallerio M, Impe JV, Logist F (2014) Tuning of NMPC controllers via multi-objective optimisation. Comput Chem Eng 61:38–50CrossRefGoogle Scholar
  134. 134.
    Vallerio M, Vercammen D, Impe JV, Logist F (2015) Interactive NBI and (e)nnc methods for the progressive exploration of the criteria space in multi-objective optimization and optimal control. Comput Chem Eng 82:186–201CrossRefGoogle Scholar
  135. 135.
    Vilanova R, Alfaro VM (2011) Robust PID control: an overview (in spanish). Revista Iberoamericana de Automática e Informática Industrial 8(3):141–158CrossRefGoogle Scholar
  136. 136.
    Wie B, Bernstein DS (1992) Benchmark problems for robust control design. J Guidance Control Dyn 15:1057–1059CrossRefGoogle Scholar
  137. 137.
    Xiong F-R, Qin Z-C, Xue Y, Schtze O, Ding Q, Sun J-Q (2014) Multi-objective optimal design of feedback controls for dynamical systems with hybrid simple cell mapping algorithm. Commun Nonlinear Sci Numer Simul 19(5):1465–1473Google Scholar
  138. 138.
    Xue Y, Li D, Gao F (2010) Multi-objective optimization and selection for the PI control of ALSTOM gasifier problem. Control Eng Pract 18(1):67–76CrossRefGoogle Scholar
  139. 139.
    Yusup N, Zain AM, Hashim SZM (2012) Evolutionary techniques in optimizing machining parameters: review and recent applications (2007–2011). Expert Syst Appl 39(10):9909–9927CrossRefGoogle Scholar
  140. 140.
    Zeng G-Q, Chen J, Dai Y-X, Li L-M, Zheng C-W, Chen M-R (2015) Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160:173–184CrossRefGoogle Scholar
  141. 141.
    Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731Google Scholar
  142. 142.
    Zhang Q, Zhou A, Zhao S, Suganthan P, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the cec 2009 special session and competition. Tech. Rep. CES-887, University of Essex and Nanyang Technological UniversityGoogle Scholar
  143. 143.
    Zhao S-Z, Iruthayarajan MW, Baskar S, Suganthan P (2011) Multi-objective robust PID controller tuning using two lbests multi-objective particle swarm optimization. Inf Sci 181(16):3323–3335CrossRefGoogle Scholar
  144. 144.
    Zhou A, Qu B-Y, Li H, Zhao S-Z, Suganthan PN, Zhang Q (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49CrossRefGoogle Scholar
  145. 145.
    Zio E, Bazzo R (2011) Level diagrams analysis of pareto front for multiobjective system redundancy allocation. Reliab Eng Syst Safety 96(5):569–580CrossRefGoogle Scholar
  146. 146.
    Zio E, Razzo R (2010) Multiobjective optimization of the inspection intervals of a nuclear safety system: a clustering-based framework for reducing the pareto front. Ann Nuclear Energy 37:798–812CrossRefGoogle Scholar
  147. 147.
    Zitzler E, Knzli S (2004) Indicator-based selection in multiobjective search. In Yao X, Burke E, Lozano J, Smith J, Merelo-Guervós J, Bullinaria J, Rowe J, Tino P, Kabán A, Schwefel H-P (eds) Parallel problem solving from nature - PPSN VIII, vol 3242 of Lecture notes in computer science. Springer, Heidelberg, pp 832–842. doi: 10.1007/978-3-540-30217-9_84
  148. 148.
    Zitzler E, Thiele L, Laumanns M, Fonseca C, da Fonseca V (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Gilberto Reynoso Meza
    • 1
  • Xavier Blasco Ferragud
    • 2
  • Javier Sanchis Saez
    • 2
  • Juan Manuel Herrero Durá
    • 2
  1. 1.Pontifícia Universidade Católica do ParanáCuritibaBrazil
  2. 2.Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations