Advertisement

Selenium pp 59-71 | Cite as

The Role of Selenium in Human Evolution

  • Louise White
  • Sergi CastellanoEmail author
Chapter

Abstract

Human migration around the world has resulted in habitation of environments that differ widely in their soil selenium (Se) levels. Consequently, populations around the world have widely different dietary intakes of this essential micronutrient. Localized adaptation to dietary differences has occurred in genes that process macronutrients, such as lactose and starch, as well as micronutrients, such as Se, iron and iodine. Recent evidence indicates that local adaptation to dietary Se intake has occurred in genes that incorporate Se into selenoproteins and regulate the use of this micronutrient. The genetic adaptation signal is particularly strong in populations that live in the Se-deficient regions of China, suggesting that Se homeostasis has been important during recent human evolution and that changes in the use and regulation of this element may have helped humans to inhabit environments that contain an inadequate supply of dietary Se.

Keywords

Diet Humans Local adaptation Micronutrients Natural selection Nutrition Selenium 

Notes

Acknowledgement

This work was supported by the Max Planck Society.

References

  1. 1.
    AM Hancock et al 2010 Philos Trans R Soc Lond B Biol Sci 365:2459Google Scholar
  2. 2.
    BF Voight et al 2006 PLoS Biol 4:446Google Scholar
  3. 3.
    F Fordyce 2005 in Essentials of Medical Geology: Impacts of the Natural Environment on Public Health, O Selinus Ed (Elsevier Academic Press, Amsterdam) p 373Google Scholar
  4. 4.
    MP Rayman 2012 Lancet 379:1256Google Scholar
  5. 5.
    Y Xia et al 2005 Am J Clin Nutr 81:829PubMedGoogle Scholar
  6. 6.
    DM Swallow 2003 Annu Rev Genet 37:197Google Scholar
  7. 7.
    LC Olds, E Sibley 2003 Hum Mol Genet 12:2333Google Scholar
  8. 8.
    Y Itan et al 2009 PLoS Comput Biol 5:e1000491CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    I Mathieson et al 2015 Nature 528:499CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    P Gerbault et al 2013 IUBMB Life 65:983CrossRefPubMedGoogle Scholar
  11. 11.
    SA Tishkoff et al 2007 Nat Genet 39:31Google Scholar
  12. 12.
    A Ranciaro et al 2014 Am J Hum Genet 94:496CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    GH Perry et al 2007 Nat Genet 39:1256Google Scholar
  14. 14.
    PJ Butterworth et al 2011 Starch 63:395Google Scholar
  15. 15.
    G Weiss 2002 Eur J Clin Invest 32:70CrossRefPubMedGoogle Scholar
  16. 16.
    AC Chua et al 2007 Crit Rev Clin Lab Sci 44:413CrossRefPubMedGoogle Scholar
  17. 17.
    C Datz et al 1998 Clin Chem 44:2429PubMedGoogle Scholar
  18. 18.
    E Beutler 2006 Annu Rev Med 57:331CrossRefPubMedGoogle Scholar
  19. 19.
    S Distante et al 2004 Hum Genet 115:269CrossRefPubMedGoogle Scholar
  20. 20.
    E Steinnes 2009 Environ Geochem Health 31:523CrossRefPubMedGoogle Scholar
  21. 21.
    C Naugler 2008 Med Hypotheses 70:691CrossRefPubMedGoogle Scholar
  22. 22.
    PM Yen 2001 Physiol Rev 81:1097Google Scholar
  23. 23.
    Office of Dietary Supplements 2011 “Iodine: Fact Sheet for Health Professionals,” Dietary Supplement Fact Sheets (U. S. National Institutes of Health, Online)Google Scholar
  24. 24.
    D Lopez Herraez et al 2009 PLoS One 4:e7888Google Scholar
  25. 25.
    L Nazemi et al 2012 Iranian J Environ Health Sci Eng 9:11CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    T Blazina et al 2014 Nat Commun 5:4717CrossRefPubMedGoogle Scholar
  27. 27.
    JE Oldfield 2002 Selenium World Atlas (STDA, Grimbergen)Google Scholar
  28. 28.
    R Hurst et al 2013 Sci Rep 3:1425CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    GQ Yang et al 1983 Am J Clin Nutr 37:872PubMedGoogle Scholar
  30. 30.
    M Bamshad, SP Wooding 2003 Nat Rev Genet 4:99Google Scholar
  31. 31.
    F Romagne et al 2014 Nucleic Acids Res 42:D437CrossRefPubMedGoogle Scholar
  32. 32.
    LL Cavalli-Sforza 2005 Nat Rev Genet 6:333Google Scholar
  33. 33.
    Q Fu et al 2013 Curr Biol 23:553CrossRefPubMedGoogle Scholar
  34. 34.
    AM Hancock et al 2010 Proc Natl Acad Sci U S A 107 Suppl 2:8924Google Scholar
  35. 35.
    PC Sabeti et al 2006 Science 312:1614Google Scholar
  36. 36.
    BS Weir, CC Cockerham 1984 Evolution 38:1358Google Scholar
  37. 37.
    S Wright 1951 Ann Eugen 15:323CrossRefPubMedGoogle Scholar
  38. 38.
    L White et al 2015 Mol Biol Evol 32:1507CrossRefPubMedGoogle Scholar
  39. 39.
    K Ahmad et al 2009 Pak J Bot 41:2397Google Scholar
  40. 40.
    ZI Khan et al 2008 Pak J Bot 40:1159Google Scholar
  41. 41.
    ZI Khan et al 2006 Asian-Aust J Anim Sci. 19:1139CrossRefGoogle Scholar
  42. 42.
    S Castellano 2009 Biochim Biophys Acta 1790:1463CrossRefPubMedGoogle Scholar
  43. 43.
    S Gromer et al 2003 Proc Natl Acad Sci U S A 100:12618CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    EL Ruggles et al 2012 in Selenium: Its Molecular Biology and Role in Human Health, DL Hatfield et al Eds (Springer, New York) p 73Google Scholar
  45. 45.
    Y Yao et al 2011 Nutrition 27:1095CrossRefPubMedGoogle Scholar
  46. 46.
    LH Canani et al 2005 J Clin Endocrinol Metab 90:3472CrossRefPubMedGoogle Scholar
  47. 47.
    JE Curran et al 2005 Nat Genet 37:1234Google Scholar
  48. 48.
    C Meplan et al 2010 Carcinogenesis 31:1074CrossRefPubMedGoogle Scholar
  49. 49.
    A Sutherland et al 2010 Genes Nutr 5:215CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    TH Mogensen 2009 Clin Microbiol Rev 22:240CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    M Kuningas et al 2009 PLoS One 4:e7795CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    MA Beck et al 2003 J Nutr 133:1463SGoogle Scholar
  53. 53.
    N Karunasinghe et al 2012 Genes Nutr 7:179CrossRefPubMedGoogle Scholar
  54. 54.
    T Hamanishi et al 2004 Diabetes 53:2455CrossRefPubMedGoogle Scholar
  55. 55.
    CB Foster et al 2006 BMC Genet 7:56Google Scholar
  56. 56.
    C Lei et al 2009 Clin Chim Acta 399:102CrossRefPubMedGoogle Scholar
  57. 57.
    Y Wen et al 2014 PLoS One 9:e103618CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    YM Xiong et al 2010 Osteoarthritis Cartilage 18:817Google Scholar
  59. 59.
    C Allmang et al 2009 Biochim Biophys Acta 1790:1415CrossRefPubMedGoogle Scholar
  60. 60.
    AA Turanov et al 2011 Adv Nutr 2:122Google Scholar
  61. 61.
    MJ Guimaraes et al 1996 Proc Natl Acad Sci U S A 93:15086Google Scholar
  62. 62.
    JL Bubenik et al 2009 RNA Biol 6:73Google Scholar
  63. 63.
    K Abdelmohsen 2012 in Binding Protein, K Abdelmohsen Ed (InTech) p 124Google Scholar
  64. 64.
    L Schomburg, U Schweizer 2009 Biochim Biophys Acta 1790:1453CrossRefPubMedGoogle Scholar
  65. 65.
    H Steinbrenner, H Sies 2009 Biochim Biophys Acta 1790:1478CrossRefPubMedGoogle Scholar
  66. 66.
    RF Burk, KE Hill 2009 Biochim Biophys Acta 1790:1441Google Scholar
  67. 67.
    KE Hill et al 1996 J Nutr 126:138Google Scholar
  68. 68.
    X Guo et al 2014 Osteoarthritis Cartilage 22:1774CrossRefPubMedGoogle Scholar
  69. 69.
    J Engelken et al 2015 Mol Biol Evol 33:738CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  1. 1.Department of Evolutionary GeneticsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany

Personalised recommendations