Sound of Vision - Spatial Audio Output and Sonification Approaches

  • Michal BujaczEmail author
  • Karol Kropidlowski
  • Gabriel Ivanica
  • Alin Moldoveanu
  • Charalampos Saitis
  • Adam Csapo
  • György Wersenyi
  • Simone Spagnol
  • Omar I. Johannesson
  • Runar Unnthorsson
  • Mikolai Rotnicki
  • Piotr Witek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9759)


The paper summarizes a number of audio-related studies conducted by the Sound of Vision consortium, which focuses on the construction of a new prototype electronic travel aid for the blind. Different solutions for spatial audio were compared by testing sound localization accuracy in a number of setups, comparing plain stereo panning with generic and individual HRTFs, as well as testing different types of stereo headphones vs custom designed quadrophonic proximaural headphones. A number of proposed sonification approaches were tested by sighted and blind volunteers for accuracy and efficiency in representing simple virtual environments.


Electronic travel aid Spatial audio HRTF HRIR Sonification Sound model Sound synthesis 



This work received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 643636 “Sound of Vision”.


  1. 1.
    Strumiłło, P.: Elektroniczne systemy nawigacji osobistej dla niewidomych i słabowidzących [Electronic personal navigation systems for the blind and visually impaired], PŁ, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki, Łódź (2012)Google Scholar
  2. 2.
    Bujacz, M., Skulimowski, P., Strumiłło, P.: Naviton - a prototype mobility aid for auditory presentation of 3D scenes. J. Audio Eng. Soc. 60(9), 696–708 (2012)Google Scholar
  3. 3.
    Skulimowski, P., Strumillo, P.: Obstacle localization in 3D scenes from stereoscopic sequences. In: 15th European Signal Processing Conference EUSIPCO 2007, Poznan, Poland (2007)Google Scholar
  4. 4.
    Owczarek, M., Skulimowski, P., Strumillo, P.: Sound of Vision – 3D scene reconstruction from stereo vision in an electronic travel aid for the visually impaired. In: Computers Helping People with Special Needs. LNCS. Springer, Heidelberg (2016, in press)Google Scholar
  5. 5.
    Dobrucki, A., Plaskota, P., Pruchnicki, P., Pec, M., Bujacz, M., Strumiłło, P.: Measurement system for personalized head-related transfer functions and its verification by virtual source localization trials with visually impaired and sighted individuals. J. Audio Eng. Soc. 58(9), 724–738 (2010)Google Scholar
  6. 6.
    Gardner, W.G., Martin, K.D.: HRTF measurements of a KEMAR. J. Acoust. Soc. Am. 97(6), 3907–3908 (1995)CrossRefGoogle Scholar
  7. 7.
    Middlebrooks, J.C., Macpherson, E.A., Onsan, Z.A.: Psychophysical customization of directional transfer functions for virtual sound localization. J. Acoust. Soc. Am. 108(6), 3088–3091 (2000)CrossRefGoogle Scholar
  8. 8.
    Geronazzo, M., Spagnol, S., Bedin, A., Avanzini, F.: Enhancing vertical localization with image-guided selection of non-individual head-related transfer functions. In: Proceeding IEEE International Conference Acoustics, Speech and Signal Processing ICASSP 2014, pp. 4496–4500 (2014)Google Scholar
  9. 9.
    Zotkin, D.N., Hwang, J., Duraiswami, R., Davis, L.S.: HRTF personalization using anthropomentric measurements. In: Proceeding IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2003), pp. 157–160 (2003)Google Scholar
  10. 10.
    Dobrucki, A., Plaskota, P.: Computational modelling of head-related transfer function. Arch. Acoust. 32, 659–682 (2007)Google Scholar
  11. 11.
    Spagnol, S., Avanzini, F.: Frequency estimation of the first Pinna Notch in head-related transfer functions with a linear anthropometric model. In: Proceeding 18th International Conference Digital Audio Effects (DAFx-2015), pp. 231–236 (2015)Google Scholar
  12. 12.
    Trapenskas, D., Frenne, N., Johansson, Ö.: Relationship between HRTF’s and anthropometric data. In: The 29th International Congress and Exhibition on Noise Control Engineering (2000)Google Scholar
  13. 13.
    Wightman, F.L., Kistler, D.J.: Factors affecting the relative salience of sound localization cues. In: Binaural and Spatial Hearing in Real and Virtual Environments, pp. 1–24. Lawrence Erlbaum Associates, Mahwah (1997)Google Scholar
  14. 14.
    Bălan, O., Moldoveanu, A., Moldoveanu, F., Morar, A.: Experiments on training the human localization abilities. In: Proceedings of the 10th International Scientific Conference eLearning and Software for Education, Bucharest (2014)Google Scholar
  15. 15.
    Bălan, O., Moldoveanu, A., Butean, A., Moldoveanu, F., Negoi, I.: Comparative research on sound localization accuracy in the free-field and virtual auditory displays. In: The 11th eLearning and Software for Education Conference - eLSE 2015 (2015)Google Scholar
  16. 16.
    Bălan, O., Moldoveanu, A., Moldoveanu, F., Negoi, I.: The role of perceptual feedback training on sound localization accuracy in audio experiments. In: Proceedings of The 11th International Scientific Conference eLearning and software for Education (2015)Google Scholar
  17. 17.
    Vitek, S., Klima, M., Husnik, L., Spirk, D.: New possibilities for blind people navigation. In: IEEE 2011 International Conference on Applied Electronics (AE), Plisen (2011)Google Scholar
  18. 18.
    Hersh, M., Johnson, M.: Assistive technology for visually impaired and blind people. Springer, London (2008)CrossRefGoogle Scholar
  19. 19.
    Farcy, R., Bellik, Y., Locomotion assistance for the blind. In: Keates S., Langdom P., Clarkson P., Robinson P. (eds.) Universal Access and Assistive Technology, pp. 277–284. Springer, London (2002)Google Scholar
  20. 20.
    Manduchi, R., Coughlan, J.M., Ivanchenko, V.: Search strategies of visually impaired persons using a camera phone wayfinding system. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1135–1140. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Matusiak, K., Skulimowski, P., Strumillo, P.: A mobile phone application for recognizing objects as a personal aid for the visually impaired users. In: Hippe, Z.S., Kulikowski, J.L., Mroczek, T., Wtorek, J. (eds.) Human-Computer Systems Interaction: Backgrounds and Applications 3. Advances in Intelligent Systems and Computing, vol. 300, pp. 201–212. (2014)Google Scholar
  22. 22.
    Skulimowski, P., Korbel, P., Wawrzyniak, P.: POI Explorer - a sonified mobile application aiding the visually impaired in urban navigation In: Proceeding of FedCSIS, ACSIS-Annals of Computer Science and Information Systems, vol. 2, pp. 969–976 (2014)Google Scholar
  23. 23.
    Ferreira, E.J., Navmetro: Preliminary study application of usability assessment methods. In: Human Factors in Design (2013)Google Scholar
  24. 24.
    Mayerhofer, B., Pressl, B., Wieser, M.: ODILIA - a mobility concept for the visually impaired. In: Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I. (eds.) ICCHP 2008. LNCS, vol. 5105, pp. 1109–1116. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    González-Mora, J., Rodríguez-Hernández, A., Rodríguez-Ramos, L.: Development of a new space perception system for blind people, based on the creation of a virtual acoustic space. In: Mira, J., Sánchez-Andrés, J.V. (eds.) Engineering Applications of Bio-Inspired Artificial Neural Networks, pp. 321–330. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Hermann, T., Hunt. A., Neuhoff, J.G.: The Sonification Handbook. Logos Verlag, Berlin (2011)Google Scholar
  27. 27.
    Shoval, S., Borenstein, J., Koren, Y.: Auditory guidance with the Navbelt - a computerized travel aid for the blind. IEEE Trans. Syst. Man Cybern. 28(3), 459–467 (1998)CrossRefGoogle Scholar
  28. 28.
    Bujacz, M., Strumiłło, P.: Stereophonic representation of virtual 3D scenes - a simulated mobility aid for the blind. In: Dobrucki, A., Petrovsky, A., Skarbek, W. (eds.) New Trends in Audio and Video, vol. 1, pp. 157–162 (2006)Google Scholar
  29. 29.
    Balan, O., Moldoveanu, A., Moldoveanu, F., Dascalu, M.I.: Audio games- a novel approach towards effective learning in the case of visually-impaired people. In: Proceeding 7th Int. Conference of Education, Research and Innovation, p. 7, Seville (2014)Google Scholar
  30. 30.
    Saitis, C., Kalimeri, K.: Identifying Urban mobility challenges for the visually impaired with mobile monitoring of multimodal biosignals. In: Antona, M., Stephanidis, C. (eds.) Universal Access in Human-Computer Interaction - 10th International Conference, UAHCI 2016, Held as Part of HCI International 2016, Toronto, ON, Canada, 17-22 July 2016, Proceedings. Springer-Verlag, Berlin (2016, in press)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michal Bujacz
    • 1
  • Karol Kropidlowski
    • 1
  • Gabriel Ivanica
    • 2
  • Alin Moldoveanu
    • 2
  • Charalampos Saitis
    • 3
  • Adam Csapo
    • 4
  • György Wersenyi
    • 4
  • Simone Spagnol
    • 5
  • Omar I. Johannesson
    • 5
  • Runar Unnthorsson
    • 5
  • Mikolai Rotnicki
    • 6
  • Piotr Witek
    • 6
  1. 1.Institute of ElectronicsLodz University of TechnologyŁódźPoland
  2. 2.University POLITEHNICA of BucharestBucharestRomania
  3. 3.ISI FoundationTurinItaly
  4. 4.Széchenyi István UniversityGyőrHungary
  5. 5.University of IcelandReykjavikIceland
  6. 6.Fundacja Instytut Rozwoju RegionalnegoKrakowPoland

Personalised recommendations