Tactile Identification of Embossed Raised Lines and Raised Squares with Variable Dot Elevation by Persons Who Are Blind

  • Georgios Kouroupetroglou
  • Aineias Martos
  • Nikolaos Papandreou
  • Konstantinos Papadopoulos
  • Vassilios Argyropoulous
  • Georgios D. Sideridis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9759)


We present a study on the identification accuracy of embossed tactile lines and squares in eight dot elevations and two dot densities. The results of correct and misclassified matched stimuli by ten congenitally blind participants are presented in confusion matrixes for the raised-dot lines and squares test stimuli. Moreover, the overall mean response time of the identification task is provided. Participants identify better the lower three dot elevations for both lines and squares on 20 or 10 dpi, with an exception for 20 dpi squares where the highest dot elevation is third in the order of recognition. The application of a multilevel model fitting to the data indicated significant effects for the role of the DOTs (raised dot lines versus raised dot squares) with the raised dot squares being associated with significantly elevated correct responding.


Embossed braille graphics Dot elevation Tactile graphics Raised dot identification 



This research has been undertaken under the project ATMAPS: “Specification of symbols used on audio-tactile maps for individuals with blindness” (Project No. 543316-LLP-1-2013-1-GR-KA3-KA3MP) [] funded with support from the European Commission under the Lifelong Learning Programme. This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use, which may be made of the information contained therein.


  1. 1.
    Ladner, R., Ivory, M., Rao, R., Burgstahler, S., Comden, D., Hahn, S., Renzelmann, M., Krisnandi, S., Ramasamy, M., Slabosky, B., Martin, A., Lacenski, A., Olsen, S., Groce, D.: Automating tactile graphics translation. In: 7th International ACM SIGACCESS Conference on Computers and Accessibility, pp. 150–157. ACM Press, New York (2005)Google Scholar
  2. 2.
    BANA/CBA: Guidelines and Standards for Tactile Graphics. The Braille Authority of North America.
  3. 3.
    Pather, A.B.: The innovative use of vector-based tactile graphics design software to auto-mate the production of raised-line tactile graphics in accordance with BANA’s newly adopted guidelines and standards for tactile graphics, 2010. J. Blind. Innov. Res. 4 (2014). doi:
  4. 4.
    Heller, M.A.: Picture and pattern perception in the sighted and the blind: the advantage of the late blind. Perception 18, 379–389 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Krufka, S.E., Barner, K.E.: A user study on tactile graphic generation methods. Behav. Inf. Technol. 25, 297–311 (2006). doi: 10.1080/01449290600636694 CrossRefGoogle Scholar
  6. 6.
    Johansson, R.S., Lamotte, R.H.: Tactile detection thresholds for a single asperity on an otherwise smooth surface. Somatosens. Mot. Res. 1, 21–31 (1983)CrossRefGoogle Scholar
  7. 7.
    Nefs, H.T., Kappers, A.M.L., Koenderink, J.J.: Amplitude and spatial-period discrimination in sinusoidal gratings by dynamic touch. Perception 30, 1263–1274 (2001)CrossRefGoogle Scholar
  8. 8.
    LaMotte, R.H., Srinivasan, M.A.: Tactile discrimination of shape: responses of slowly adapting mechanoreceptive afferents to a step stroked across the monkey fingerpad. J. Neurosci. 7, 1655–1671 (1987)Google Scholar
  9. 9.
    Yau, J.M., Kim, S.S., Thakur, P.S., Bensmaia, S.J.: Feeling form: the neural basis of haptic shape perception. J. Neurophysiol. (2015). doi: 10.1152/jn.00598.2015 Google Scholar
  10. 10.
    Frascara, J., Sadler-Takach, B.: The design of tactile map symbols for visually impaired people. Inf. Des. J. 7, 67–75 (1993)Google Scholar
  11. 11.
    Jehoel, S., Sowden, P.T., Ungar, S., Sterr, A.: Tactile elevation perception in blind and sighted participants and its implications for tactile map creation. Hum. Factors 51, 208–223 (2009)CrossRefGoogle Scholar
  12. 12.
    McCallum, D., Ungar, S.: An introduction to the use of inkjet for tactile diagram production. Br. J. Vis. Impairment 21, 73–77 (2003)CrossRefGoogle Scholar
  13. 13.
    McCallum, D., Ungar, S.: Producing tactile maps using new inkjet technology: an introduction. Cartogr. J. 40, 294–298 (2003)CrossRefGoogle Scholar
  14. 14.
    Shiah, Y.J., Chang, F., Tam, W.C.: Recognition of tactile relief by children and adults. Percept. Mot. Skills 113, 727–738 (2001)CrossRefGoogle Scholar
  15. 15.
    Skedung, L., Arvidsson, M., Chung, J.Y., Stafford, C., Berglund, B., Rutland, M.: Feeling small: exploring the tactile perception limits. Sci. Rep. 3, 2617 (2013). doi: 10.1038/srep02617 CrossRefGoogle Scholar
  16. 16.
    Tiresias: Scientific & technological Reports: Braille Cell Dimensions.
  17. 17.
    Douglas, G., Weston, A., Whittaker, J., Wilkins, S., Robinson, D.: Braille dot height research: investigation of Braille dot elevation on pharmaceutical products. Final Report, University of Birmingham and RNIB (2008)Google Scholar
  18. 18.
    Raudenbush, S.W., Bryk, A.S.: Hierarchical Linear Models:Applications and Data Analysis Methods. Sage Publications Inc., Thousand Oaks (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Georgios Kouroupetroglou
    • 1
  • Aineias Martos
    • 1
  • Nikolaos Papandreou
    • 1
  • Konstantinos Papadopoulos
    • 2
  • Vassilios Argyropoulous
    • 3
  • Georgios D. Sideridis
    • 4
  1. 1.Department of Informatics and TelecommunicationsNational and Kapodistrian University of AthensAthensGreece
  2. 2.Department of Educational and Social PolicyUniversity of MacedoniaThessalonikiGreece
  3. 3.Department of Special EducationUniversity of ThessalyVolosGreece
  4. 4.Faculty of Primary EducationNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations