Advertisement

Listeria monocytogenes and the Inflammasome: From Cytosolic Bacteriolysis to Tumor Immunotherapy

  • Erin Theisen
  • John-Demian Sauer
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 397)

Abstract

Inflammasomes are cytosolic innate immune surveillance systems that recognize a variety of danger signals, including those from pathogens. Listeria monocytogenes is a Gram-positive intracellular bacterium evolved to live within the harsh environment of the host cytosol. Further, L. monocytogenes can activate a robust cell-mediated immune response that is being harnessed as an immunotherapeutic platform. Access to the cytosol is critical for both causing disease and inducing a protective immune response, and it is hypothesized that the cytosolic innate immune system, including the inflammasome, is critical for both host protection and induction of long-term immunity. L. monocytogenes can activate a variety of inflammasomes via its pore-forming toxin listeriolysin-O, flagellin, or DNA released through bacteriolysis; however, inflammasome activation attenuates L. monocytogenes, and as such, L. monocytogenes has evolved a variety of ways to limit inflammasome activation. Surprisingly, inflammasome activation also impairs the host cell-mediated immune response. Thus, understanding how L. monocytogenes activates or avoids detection by the inflammasome is critical to understand the pathogenesis of L. monocytogenes and improve the cell-mediated immune response generated to L. monocytogenes for more effective immunotherapies.

Keywords

Listeria monocytogenes Inflammasome AIM2 Immunotherapy Adaptive immunity Innate immunity macrophage 

Notes

Acknowledgments

The authors would like to thank Dr. Laurie Ristow and Grischa Chen for critical reading of this manuscript. The authors would also like to thank other members of the Sauer laboratory for commentary on the figures. This work is funded by the NIH (R01 CA188034) to J-D.S., and an AAI Careers in Immunology Fellowship to E.T.

References

  1. Akhter A, Caution K, Abu Khweek A et al (2012) Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37:35–47. doi: 10.1016/j.immuni.2012.05.001 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anand PK, Malireddi RKS, Lukens JR et al (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488:389–393. doi: 10.1038/nature11250 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Auerbuch V, Brockstedt DG, Meyer-Morse N et al (2004) Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes. J Exp Med 200:527–533. doi: 10.1084/jem.20040976 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bahjat KS, Meyer-Morse N, Lemmens EE et al (2009) Suppression of cell-mediated immunity following recognition of phagosome-confined bacteria. PLoS Pathog. doi: 10.1371/journal.ppat.1000568 PubMedPubMedCentralGoogle Scholar
  5. Beuzón CR, Méresse S, Unsworth KE et al (2000) Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19:3235–3249. doi: 10.1093/emboj/19.13.3235 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Biswas A, Meissner TB, Kawai T, Kobayashi KS (2012) Cutting edge: impaired MHC class I expression in mice deficient for Nlrc5/class I transactivator. J Immunol 189:516–520. doi: 10.4049/jimmunol.1200064 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Boneca IG, Dussurget O, Cabanes D et al (2007) A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci USA 104:997–1002. doi: 10.1073/pnas.0609672104 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bossaller L, Chiang P-I, Schmidt-Lauber C et al (2012) Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189:5508–5512. doi: 10.4049/jimmunol.1202121 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Brodsky IE, Palm NW, Sadanand S et al (2010) A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe 7:376–387. doi: 10.1016/j.chom.2010.04.009 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Broz P, von Moltke J, Jones JW et al (2010) Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–483. doi: 10.1016/j.chom.2010.11.007 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Burke TP, Loukitcheva A, Zemansky J, et al (2014) Listeria monocytogenes is resistant to lysozyme through the regulation, not the acquisition, of cell wall-modifying enzymes. J Bacteriol 196:3756–3767. doi:  10.1128/JB.02053-14
  12. Camilli A, Goldfine H, Portnoy DA (1991) Listeria monocytogenes mutants lacking phosphatidylinositol-specific phospholipase C are avirulent. J Exp Med 173:751–754PubMedCrossRefGoogle Scholar
  13. Carrero JA, Calderon B, Unanue ER (2006) Lymphocytes are detrimental during the early innate immune response against Listeria monocytogenes. J Exp Med 203:933–940. doi: 10.1084/jem.20060045 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen GY, Liu M, Wang F et al (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 186:7187–7194. doi: 10.4049/jimmunol.1100412 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Creasey EA, Isberg RR (2012) The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci USA 109:3481–3486. doi: 10.1073/pnas.1121286109 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Davis BK, Roberts RA, Huang MT et al (2011) Cutting edge: NLRC5-dependent activation of the inflammasome. J Immunol 186:1333–1337. doi: 10.4049/jimmunol.1003111 PubMedCrossRefGoogle Scholar
  17. DeYoung KL, Ray ME, Su YA et al (1997) Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene 15:453–457. doi: 10.1038/sj.onc.1201206 PubMedCrossRefGoogle Scholar
  18. Dunne A, Ross PJ, Pospisilova E et al (2010) Inflammasome activation by adenylate cyclase toxin directs Th17 responses and protection against Bordetella pertussis. J Immunol 185:1711–1719. doi: 10.4049/jimmunol.1000105 PubMedCrossRefGoogle Scholar
  19. Elinav E, Strowig T, Kau AL et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757. doi: 10.1016/j.cell.2011.04.022 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fernandes-Alnemri T, Yu J-W, Datta P et al (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513. doi: 10.1038/nature07710 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Fernandes-Alnemri T, Kang S, Anderson C et al (2013) Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol 191:3995–3999. doi: 10.4049/jimmunol.1301681 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ (2014) Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J Food Prot 77:150–170. doi: 10.4315/0362-028X.JFP-13-150 PubMedCrossRefGoogle Scholar
  23. Franchi L, Kanneganti T-D, Dubyak GR, Núñez G (2007) Differential requirement of P2X7 receptor and intracellular K+ for caspase-1 activation induced by intracellular and extracellular bacteria. J Biol Chem 282:18810–18818. doi: 10.1074/jbc.M610762200 PubMedCrossRefGoogle Scholar
  24. Gahan CG, Collins JK (1995) Non-dystrophic 129 REJ mice are susceptible to i.p. infection with Listeria monocytogenes despite an ability to recruit inflammatory neutrophils to the peritoneal cavity. Microb Pathog 18:355–364. doi: 10.1006/mpat.1995.0032 PubMedCrossRefGoogle Scholar
  25. Ge J, Gong Y-N, Xu Y, Shao F (2012) Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. Proc Natl Acad Sci USA 109:6193–6198. doi: 10.1073/pnas.1117490109 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Glaccum MB, Stocking KL, Charrier K et al (1997) Phenotypic and functional characterization of mice that lack the type I receptor for IL-1. J Immunol 159:3364–3371PubMedGoogle Scholar
  27. Glomski IJ, Gedde MM, Tsang AW et al (2002) The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 156:1029–1038. doi: 10.1083/jcb.200201081 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Glomski IJ, Decatur AL, Portnoy DA (2003) Listeria monocytogenes mutants that fail to compartmentalize Listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun 71:6754–6765. doi: 10.1128/IAI.71.12.6754-6765.2003 PubMedPubMedCentralCrossRefGoogle Scholar
  29. Goetz M, Bubert A, Wang G et al (2001) Microinjection and growth of bacteria in the cytosol of mammalian host cells. Proc Natl Acad Sci USA 98:12221–12226. doi: 10.1073/pnas.211106398 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Goossens PL, Milon G (1992) Induction of protective CD8+ T lymphocytes by an attenuated Listeria monocytogenes actA mutant. Int Immunol 4:1413–1418PubMedCrossRefGoogle Scholar
  31. Gringhuis SI, Kaptein TM, Wevers BA et al (2012) Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol 13:246–254. doi: 10.1038/ni.2222 PubMedCrossRefGoogle Scholar
  32. Hamon MA, Cossart P (2011) K+ efflux is required for histone H3 dephosphorylation by Listeria monocytogenes listeriolysin O and other pore-forming toxins. Infect Immun 79:2839–2846. doi: 10.1128/IAI.01243-10 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hamon MA, Ribet D, Stavru F, Cossart P (2012) Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 20:360–368. doi: 10.1016/j.tim.2012.04.006 PubMedCrossRefGoogle Scholar
  34. Hara H, Tsuchiya K, Nomura T et al (2008) Dependency of caspase-1 activation induced in macrophages by Listeria monocytogenes on cytolysin, listeriolysin O, after evasion from phagosome into the cytoplasm. J Immunol 180:7859–7868PubMedCrossRefGoogle Scholar
  35. Haring JS, Harty JT (2009) Interleukin-18-related genes are induced during the contraction phase but do not play major roles in regulating the dynamics or function of the T-cell response to Listeria monocytogenes infection. Infect Immun 77:1894–1903. doi: 10.1128/IAI.01315-08 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hornung V, Ablasser A, Charrel-Dennis M et al (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518. doi: 10.1038/nature07725 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Janeway CA (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13PubMedCrossRefGoogle Scholar
  38. Kamp HD, Higgins DE (2009) Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes. Mol Microbiol 74:421–435. doi: 10.1111/j.1365-2958.2009.06874.x PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kanneganti T-D, Ozören N, Body-Malapel M et al (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236. doi: 10.1038/nature04517 PubMedCrossRefGoogle Scholar
  40. Kayagaki N, Warming S, Lamkanfi M et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121. doi: 10.1038/nature10558 PubMedCrossRefGoogle Scholar
  41. Kayagaki N, Stowe IB, Lee BL et al (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–671. doi: 10.1038/nature15541 PubMedCrossRefGoogle Scholar
  42. Kim S, Bauernfeind F, Ablasser A et al (2010) Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur J Immunol 40:1545–1551. doi: 10.1002/eji.201040425 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kocks C, Gouin E, Tabouret M et al (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531PubMedCrossRefGoogle Scholar
  44. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595. doi: 10.1038/nature10394 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kortmann J, Brubaker SW, Monack DM (2015) Cutting edge: inflammasome activation in primary human macrophages is dependent on flagellin. J Immunol 195:815–819. doi: 10.4049/jimmunol.1403100 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Labow M, Shuster D, Zetterstrom M et al (1997) Absence of IL-1 signaling and reduced inflammatory response in IL-1 type I receptor-deficient mice. J Immunol 159:2452–2461PubMedGoogle Scholar
  47. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411. doi: 10.1038/nri3452 PubMedCrossRefGoogle Scholar
  48. Le DT, Dubensky TW, Brockstedt DG (2012) Clinical development of Listeria monocytogenes-based immunotherapies. Semin Oncol 39:311–322. doi: 10.1053/j.seminoncol.2012.02.008 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Le DT, Wang-Gillam A, Picozzi V et al (2015) Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 33:1325–1333. doi: 10.1200/JCO.2014.57.4244 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Leber JH, Crimmins GT, Raghavan S et al (2008) Distinct TLR- and NLR-mediated transcriptional responses to an intracellular pathogen. PLoS Pathog 4:e6. doi: 10.1371/journal.ppat.0040006 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lin K-M, Hu W, Troutman TD et al (2014) IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci USA 111:775–780. doi: 10.1073/pnas.1320294111 PubMedCrossRefGoogle Scholar
  52. Lochner M, Kastenmüller K, Neuenhahn M et al (2008) Decreased susceptibility of mice to infection with Listeria monocytogenes in the absence of interleukin-18. Infect Immun 76:3881–3890. doi: 10.1128/IAI.01651-07 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Mariathasan S, Weiss DS, Newton K et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232. doi: 10.1038/nature04515 PubMedCrossRefGoogle Scholar
  54. Meissner TB, Li A, Biswas A et al (2010) NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc Natl Acad Sci USA 107:13794–13799. doi: 10.1073/pnas.1008684107 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Meixenberger K, Pache F, Eitel J et al (2010) Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3. J Immunol 184:922–930. doi: 10.4049/jimmunol.0901346 PubMedCrossRefGoogle Scholar
  56. Mengaud J, Braun-Breton C, Cossart P (1991) Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol Microbiol 5:367–372PubMedCrossRefGoogle Scholar
  57. Mengaud J, Ohayon H, Gounon P et al (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932PubMedCrossRefGoogle Scholar
  58. Mercado R, Vijh S, Allen SE et al (2000) Early programming of T cell populations responding to bacterial infection. J Immunol 165:6833–6839PubMedCrossRefGoogle Scholar
  59. Miao EA, Leaf IA, Treuting PM et al (2010a) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11:1136–1142. doi: 10.1038/ni.1960 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Miao EA, Mao DP, Yudkovsky N et al (2010b) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107:3076–3080. doi: 10.1073/pnas.0913087107 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mielke LA, Elkins KL, Wei L et al (2009) Tumor progression locus 2 (Map3k8) is critical for host defense against Listeria monocytogenes and IL-1 beta production. J Immunol 183:7984–7993. doi: 10.4049/jimmunol.0901336 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Neighbors M, Xu X, Barrat FJ et al (2001) A critical role for interleukin 18 in primary and memory effector responses to Listeria monocytogenes that extends beyond its effects on interferon production. J Exp Med 194:343–354PubMedPubMedCentralCrossRefGoogle Scholar
  63. Normand S, Delanoye-Crespin A, Bressenot A et al (2011) Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc Natl Acad Sci USA 108:9601–9606. doi: 10.1073/pnas.1100981108 PubMedPubMedCentralCrossRefGoogle Scholar
  64. O’Connell RM, Saha SK, Vaidya SA et al (2004) Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J Exp Med 200:437–445. doi: 10.1084/jem.20040712 PubMedPubMedCentralCrossRefGoogle Scholar
  65. O’Riordan M, Yi CH, Gonzales R et al (2002) Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc Natl Acad Sci 99:13861–13866. doi: 10.1073/pnas.202476699 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Opitz B, Püschel A, Beermann W et al (2006) Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 176:484–490PubMedCrossRefGoogle Scholar
  67. Ozören N, Masumoto J, Franchi L et al (2006) Distinct roles of TLR2 and the adaptor ASC in IL-1beta/IL-18 secretion in response to Listeria monocytogenes. J Immunol 176:4337–4342PubMedCrossRefGoogle Scholar
  68. Peel M, Donachie W, Shaw A (1988) Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J Gen Microbiol 134:2171–2178. doi: 10.1099/00221287-134-8-2171 PubMedGoogle Scholar
  69. Peng K, Broz P, Jones J et al (2011) Elevated AIM2-mediated pyroptosis triggered by hypercytotoxic Francisella mutant strains is attributed to increased intracellular bacteriolysis. Cell Microbiol 13:1586–1600. doi: 10.1111/j.1462-5822.2011.01643.x PubMedPubMedCentralCrossRefGoogle Scholar
  70. Personnic N, Bruck S, Nahori M-A et al (2010) The stress-induced virulence protein InlH controls interleukin-6 production during murine listeriosis. Infect Immun 78:1979–1989. doi: 10.1128/IAI.01096-09 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Portnoy DA, Jacks PS, Hinrichs DJ (1988) Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167:1459–1471PubMedCrossRefGoogle Scholar
  72. Rae CS, Geissler A, Adamson PC, Portnoy DA (2011) Mutations of the Listeria monocytogenes peptidoglycan N-deacetylase and O-acetylase result in enhanced lysozyme sensitivity, bacteriolysis, and hyperinduction of innate immune pathways. Infect Immun 79:3596–3606. doi: 10.1128/IAI.00077-11 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ritter M, Gross O, Kays S et al (2010) Schistosoma mansoni triggers Dectin-2, which activates the Nlrp3 inflammasome and alters adaptive immune responses. Proc Natl Acad Sci USA 107:20459–20464. doi: 10.1073/pnas.1010337107 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sakhon OS, Victor KA, Choy A et al (2013) NSD1 mitigates caspase-1 activation by listeriolysin O in macrophages. PLoS ONE 8:e75911. doi: 10.1371/journal.pone.0075911 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Sauer J-D, Witte CE, Zemansky J et al (2010) Listeria monocytogenes triggers AIM2-mediated pyroptosis upon infrequent bacteriolysis in the macrophage cytosol. Cell Host Microbe 7:412–419. doi: 10.1016/j.chom.2010.04.004 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sauer J-D, Pereyre S, Archer KA et al (2011a) Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc Natl Acad Sci USA 108:12419–12424. doi: 10.1073/pnas.1019041108 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Sauer J-D, Sotelo-Troha K, von Moltke J et al (2011b) The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun 79:688–694. doi: 10.1128/IAI.00999-10 PubMedCrossRefGoogle Scholar
  78. Schmidt RL, Lenz LL (2012) Distinct licensing of IL-18 and IL-1β secretion in response to NLRP3 inflammasome activation. PLoS ONE 7:e45186. doi: 10.1371/journal.pone.0045186 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Schnupf P, Hofmann J, Norseen J et al (2006a) Regulated translation of listeriolysin O controls virulence of Listeria monocytogenes. Mol Microbiol 61:999–1012. doi: 10.1111/j.1365-2958.2006.05286.x PubMedCrossRefGoogle Scholar
  80. Schnupf P, Portnoy DA, Decatur AL (2006b) Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence. Cell Microbiol 8:353–364. doi: 10.1111/j.1462-5822.2005.00631.x PubMedCrossRefGoogle Scholar
  81. Shen A, Higgins DE (2005) The 5’ untranslated region-mediated enhancement of intracellular listeriolysin O production is required for Listeria monocytogenes pathogenicity. Mol Microbiol 57:1460–1473. doi: 10.1111/j.1365-2958.2005.04780.x PubMedCrossRefGoogle Scholar
  82. Shen A, Higgins DE (2006) The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. PLoS Pathog 2:e30. doi: 10.1371/journal.ppat.0020030 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Shen Y, Naujokas M, Park M, Ireton K (2000) InlB-dependent internalization of Listeria is mediated by the met receptor tyrosine kinase. Cell 103:501–510. doi: 10.1016/S0092-8674(00)00141-0 PubMedCrossRefGoogle Scholar
  84. Shen A, Kamp HD, Grundling A, Higgins DE (2006) A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev 20:3283–3295. doi: 10.1101/gad.1492606 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Shi C, Hohl TM, Leiner I et al (2011) Ly6G+ neutrophils are dispensable for defense against systemic Listeria monocytogenes infection. J Immunol 187:5293–5298. doi: 10.4049/jimmunol.1101721 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–665. doi: 10.1038/nature15514 PubMedCrossRefGoogle Scholar
  87. Slaghuis J, Goetz M, Engelbrecht F, Goebel W (2004) Inefficient replication of Listeria innocua in the cytosol of mammalian cells. J Infect Dis 189:393–401. doi: 10.1086/381206 PubMedCrossRefGoogle Scholar
  88. Sugawara S, Uehara A, Nochi T et al (2001) Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol 167:6568–6575PubMedCrossRefGoogle Scholar
  89. Sutterwala FS, Mijares LA, Li L et al (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235–3245. doi: 10.1084/jem.20071239 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Swaminathan B, Gerner-Smidt P (2007) The epidemiology of human listeriosis. Microbes Infect 9:1236–1243. doi: 10.1016/j.micinf.2007.05.011 PubMedCrossRefGoogle Scholar
  91. Thomas JA, Allen JL, Tsen M et al (1999) Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J Immunol 163:978–984PubMedGoogle Scholar
  92. Tsuchiya K, Hara H, Kawamura I et al (2010) Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J Immunol 185:1186–1195. doi: 10.4049/jimmunol.1001058 PubMedCrossRefGoogle Scholar
  93. Tsuchiya K, Hara H, Fang R et al (2014) The adaptor ASC exacerbates lethal Listeria monocytogenes infection by mediating IL-18 production in an inflammasome-dependent and -independent manner. Eur J Immunol 44:3696–3707. doi: 10.1002/eji.201444673 PubMedCrossRefGoogle Scholar
  94. Tsuji NM, Tsutsui H, Seki E et al (2004) Roles of caspase-1 in Listeria infection in mice. Int Immunol 16:335–343PubMedCrossRefGoogle Scholar
  95. Uchiyama R, Yonehara S, Tsutsui H (2013) Fas-mediated inflammatory response in Listeria monocytogenes infection. J Immunol (Baltimore, Md 1950) 190:4245–4254. doi: 10.4049/jimmunol.1203059 CrossRefGoogle Scholar
  96. van de Veerdonk FL, Joosten LAB, Shaw PJ et al (2011) The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur J Immunol 41:2260–2268. doi: 10.1002/eji.201041226 PubMedPubMedCentralCrossRefGoogle Scholar
  97. van Pijkeren JP, Morrissey D, Monk IR et al (2010) A novel Listeria monocytogenes-based DNA delivery system for cancer gene therapy. Hum Gene Ther 21:405–416. doi: 10.1089/hum.2009.022 PubMedCrossRefGoogle Scholar
  98. Vazquez-Boland JA, Kocks C, Dramsi S et al (1992) Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60:219–230PubMedPubMedCentralGoogle Scholar
  99. Vincent WJB, Freisinger CM, Lam P-Y et al (2015) Macrophages are required for inflammasome-dependent host defense in vivo. Cell Microbiol. doi: 10.1111/cmi.12536 PubMedGoogle Scholar
  100. Waite JC, Leiner I, Lauer P et al (2011) Dynamic imaging of the effector immune response to listeria infection in vivo. PLoS Pathog 7:e1001326. doi: 10.1371/journal.ppat.1001326 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Wang S, Miura M, Jung YK et al (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509PubMedCrossRefGoogle Scholar
  102. Warren SE, Mao DP, Rodriguez AE et al (2008) Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 180:7558–7564PubMedPubMedCentralCrossRefGoogle Scholar
  103. Warren SE, Armstrong A, Hamilton MK et al (2010) Cutting edge: cytosolic bacterial DNA activates the inflammasome via Aim2. J Immunol 185:818–821. doi: 10.4049/jimmunol.1000724 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Warren SE, Duong H, Mao DP et al (2011) Generation of a Listeria vaccine strain by enhanced caspase-1 activation. Eur J Immunol 41:1934–1940. doi: 10.1002/eji.201041214 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Williams CR, Dustin ML, Sauer J-D (2013) Inflammasome-mediated inhibition of Listeria monocytogenes-stimulated immunity is independent of myelomonocytic function. PLoS ONE 8:e83191. doi: 10.1371/journal.pone.0083191 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Witte CE, Archer KA, Rae CS et al (2012) Innate immune pathways triggered by Listeria monocytogenes and their role in the induction of cell-mediated immunity. Adv Immunol 113:135–156. doi: 10.1016/B978-0-12-394590-7.00002-6 PubMedCrossRefGoogle Scholar
  107. Woodward JJ, Iavarone AT, Portnoy DA (2010) c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 80(328):1703–1705CrossRefGoogle Scholar
  108. Wu J, Fernandes-Alnemri T, Alnemri ES (2010) Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in Caspase-1 activation by Listeria monocytogenes. J Clin Immunol 30:693–702. doi: 10.1007/s10875-010-9425-2 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Yao Y, Wang Y, Chen F et al (2012) NLRC5 regulates MHC class I antigen presentation in host defense against intracellular pathogens. Cell Res 22:836–847. doi: 10.1038/cr.2012.56 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Zhao Y, Yang J, Shi J et al (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600. doi: 10.1038/nature10510 PubMedCrossRefGoogle Scholar
  111. Zheng H, Fletcher D, Kozak W et al (1995) Resistance to fever induction and impaired acute-phase response in interleukin-1β-deficient mice. Immunity 3:9–19. doi: 10.1016/1074-7613(95)90154-X PubMedCrossRefGoogle Scholar
  112. Zou T, Garifulin O, Berland R, Boyartchuk VL (2011) Listeria monocytogenes infection induces prosurvival metabolic signaling in macrophages. Infect Immun 79:1526–1535. doi: 10.1128/IAI.01195-10 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Medical Microbiology and Immunology, School of Medicine and Public HealthUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations