Separating Codes and Traffic Monitoring

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9778)

Abstract

This paper studies the problem of traffic monitoring which consists in differentiating a set of walks on a directed graphs by placing sensors on as few arcs as possible. The problem of characterising a set of individuals by testing as few attributes as possible is already well-known but traffic monitoring presents new challenges that the previous models of separation fall short at modelling such as taking into account the multiplicity and order of the arcs in a walk. We therefore introduce a new stronger model of separation based on languages that generalises the traffic monitoring problem. We study two subproblems that we think are especially relevant for practical applications and develop methods to solve them combining integer linear programming, separating codes and language theory.

References

  1. 1.
    Arden, D.N.: Delayed-logic and finite-state machines. In: Proceedings of the 2nd Annual Symposium on Switching Circuit Theory and Logical Design (SWCT 1961), FOCS 1961, pp. 133–151. IEEE Computer Society, Washington, DC (1961)Google Scholar
  2. 2.
    Argiroffo, G.R., Bianchi, S.M., Wagler, A.K.: Polyhedra associated with identifying codes. Electron. Not. Discrete Math. 44, 175–180 (2013)CrossRefGoogle Scholar
  3. 3.
    De Bontridder, K.M.J., Halldórsson, B.V., Halldórsson, M.M., Hurkens, C.A.J., Lenstra, J.K., Ravi, R., Stougie, L.: Approximation algorithms for the test cover problem. Math. Program. 98(1–3), 477–491 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Charbit, E., Charon, I., Cohen, G.D., Hudry, O., Lobstein, A.: Discriminating codes in bipartite graphs: bounds, extremal cardinalities, complexity. Adv. Math. Comm. 2(4), 403–420 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Charon, I., Cohen, G.D., Hudry, O., Lobstein, A.: Discriminating codes in (bipartite) planar graphs. Eur. J. Comb. 29(5), 1353–1364 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Charon, I., Hudry, O., Lobstein, A.: Minimizing the size of an identifying or locating-dominating code in a graph is np-hard. Theoret. Comput. Sci. 290(3), 2109–2120 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)Google Scholar
  8. 8.
    Haynes, T.W., Knisley, D.J., Seier, E., Zou, Y.: A quantitative analysis of secondary RNA structure using domination based parameters on trees. BMC Bioinform. 7, 108 (2006)CrossRefGoogle Scholar
  9. 9.
    Honkala, I.S., Laihonen, T., Ranto, S.M.: On strongly identifying codes. Discrete Math. 254(1–3), 191–205 (2002)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation - International Edition, 2nd edn. Addison-Wesley (2003)Google Scholar
  11. 11.
    Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Inf. Theory 44(2), 599–611 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kim, J.H., Pikhurko, O., Spencer, J.H., Verbitsky, O.: How complex are random graphs in first order logic? Random Struct. Algorithms 26(1–2), 119–145 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata Studies (1956)Google Scholar
  14. 14.
    Laifenfeld, M., Trachtenberg, A., Cohen, R., Starobinski, D.: Joint monitoring and routing in wireless sensor networks using robust identifying codes. MONET 14(4), 415–432 (2009)Google Scholar
  15. 15.
    Maheshwari, S.: Traversal marker placement problem are np-complete. In Research report no CU-CS-092-76, Dept. of Computer Science, University of Colorado at Boulder (1976)Google Scholar
  16. 16.
    Metze, G., Schertz, D.R., To, K., Whitney, G., Kime, C.R., Russell, J.D.: Comments on “derivation of minimal complete sets of test-input sequences using boolean differences. IEEE Trans. Comput. 24(1), 108 (1975)CrossRefMATHGoogle Scholar
  17. 17.
    Meurdesoif, P., Pesneau, P., Vanderbeck, F.: Meter installation for monitoring network traffic. In: International Network Optimization Conference (INOC), Spa, Belgium, 2007Google Scholar
  18. 18.
    Moret, B., Shapiro, H.: On minimizing a set of tests. SIAM J. Sci. Stat. Comput. 6(4), 983–1003 (1985)CrossRefGoogle Scholar
  19. 19.
    Narendra, P.M., Fukunaga, K.: A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. 26(9), 917–922 (1977)CrossRefMATHGoogle Scholar
  20. 20.
    Seo, S.J., Slater, P.J.: Open neighborhood locating-dominating in trees. Discrete Appl. Math. 159(6), 484–489 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Seo, S.J., Slater, P.J.: Open neighborhood locating-domination for infinite cylinders. In: ACM Southeast Regional Conference, pp. 334–335 (2011)Google Scholar
  22. 22.
    Ungrangsi, R., Trachtenberg, A., Starobinski, D.: An implementation of indoor location detection systems based on identifying codes. In: Aagesen, F.A., Anutariya, C., Wuwongse, V. (eds.) INTELLCOMM 2004. LNCS, vol. 3283, pp. 175–189. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Holmes, B., Willcox, W.R., Lapage, S.P.: A review of numerical methods in bacterial identification. Antonie van Leeuwenhoek 46(3), 233–299 (1980)CrossRefGoogle Scholar
  24. 24.
    Willcox, W.R., Lapage, S.P.: Automatic construction of diagnostic tables. Comput. J. 15(3), 263–267 (1972)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.LaBRIUniversity of BordeauxBordeauxFrance

Personalised recommendations