Near-Optimal Dominating Sets via Random Sampling

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9778)


A minimum dominating set (MDS) of a simple undirected graph G is a dominating set with the smallest possible cardinality among all dominating sets of G and the MDS problem represents the problem of finding the MDS in a given input graph.

Motivated by the transportation, social and biological networks from a control theory perspective, the main result of this paper is the assertion that a random sampling is usable to find a near-optimal dominating set in an arbitrary connected graph. Our result might be of significance in particular contexts where exact algorithms cannot be run, e.g. in distributed computation environments. Moreover, the analysis of the relationship between the time complexity and the approximation ratio of the corresponding sequential algorithm exposes the counterintuitive behavior.


  1. 1.
    Chen, Y.P., Liestman, A.L.: Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks. In: Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking & Computing MobiHoc 2002, pp. 165–172. ACM, New York (2002)Google Scholar
  2. 2.
    Cooper, C., Klasing, R., Zito, M.: Lower bounds and algorithms for dominating sets in web graphs. Internet Math. 2(3), 275–300 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)CrossRefMATHGoogle Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979)MATHGoogle Scholar
  5. 5.
    Gast, M., Hauptmann, M., Karpinski, M.: Inapproximability of dominating set in power law graphs. Theor. Comput. Sci. 562, 436–452 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gomes, C.P., Williams, R.: Approximation algorithms. In: Burke, E., Kendall, G. (eds.) Introduction to Optimization, Decision Support and Search Methodologies, pp. 557–585. Kluwer, Dordrecht (2005)Google Scholar
  7. 7.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York (1998)MATHGoogle Scholar
  8. 8.
    Hooker, J.N., Garfinkel, R.S., Chen, C.K.: Finite dominating sets for network location problems. Oper. Res. 39(1), 100–118 (1991). INFORMSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Hromkovič, J.: Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms. Springer, Heidelberg (2005)CrossRefMATHGoogle Scholar
  10. 10.
    Kelleher, L., Cozzens, M.: Dominating sets in social network graphs. Math. Soc. Sci. 16, 267–279 (1988)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Kratsch, D., Fomin, F.V., Grandoni, F.: Exact algorithms for dominating set. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 1–5. Springer, New York (2008)Google Scholar
  12. 12.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, New York (1995)CrossRefMATHGoogle Scholar
  13. 13.
    Nacher, J.C., Akutsu, T.: Analysis on critical nodes in controlling complex networks using dominating sets. In: Proceedings of the International Conference on Signal-Image Technology & Internet-Based Systems, pp. 649–654. IEEE Computer Society Press (2013)Google Scholar
  14. 14.
    Nehéz, M., Bernát, D., Klaučo, M.: Comparison of algorithms for near-optimal dominating sets computation in real-world networks. In: Proceedings of the 16th International Conference on Computer Systems and Technologies, pp. 199–206. ACM, New York (2015)Google Scholar
  15. 15.
    Nikoletseas, S.E., Spirakis, P.G.: Near-optimal dominating sets in dense random graphs in polynomial expected time. In: van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 1–10. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  16. 16.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing STOC 1997, pp. 475–484. ACM, New York (1997)Google Scholar
  17. 17.
    van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discrete Appl. Math. 159(17), 2147–2164 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wang, H., Zheng, H., Browne, F., Wang, C.: Minimum dominating sets in cell cycle specific protein interaction network. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, pp. 25–30. IEEE Computer Society Press (2014)Google Scholar
  19. 19.
    Wuchty, S.: Controllabilty in protein interaction networks. Proc. Natl. Acad. Sci. USA 111(9), 7156–7160 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Information Engineering, Automation and Mathematics, Faculty of Chemical and Food TechnologySlovak University of Technology in BratislavaBratislavaSlovak Republic

Personalised recommendations