Parameterized Complexity of Team Formation in Social Networks

  • Robert Bredereck
  • Jiehua Chen
  • Falk Hüffner
  • Stefan Kratsch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9778)


Given a task that requires some skills and a social network of individuals with different skills, the Team Formation problem asks to find a team of individuals that together can perform the task, while minimizing communication costs. Since the problem is NP-hard, we identify the source of intractability by analyzing its parameterized complexity with respect to parameters such as the total number of skills k, the team size l, the communication cost budget b, and the maximum vertex degree \(\varDelta \). We show that the computational complexity strongly depends on the communication cost measure: when using the weight of a minimum spanning tree of the subgraph formed by the selected team, we obtain fixed-parameter tractability for example with respect to the parameter k. In contrast, when using the diameter as measure, the problem is intractable with respect to any single parameter; however, combining \(\varDelta \) with either b or l yields fixed-parameter tractability.



This work was started at the research retreat of the TU Berlin Algorithms and Computational Complexity group held in April 2014.


  1. 1.
    Anagnostopoulos, A., Becchetti, L., Castillo, C., Gionis, A., Leonardi, S.: Online team formation in social networks. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 839–848. ACM (2012)Google Scholar
  2. 2.
    Arkin, E.M., Hassin, R.: Minimum-diameter covering problems. Networks 36(3), 147–155 (2000)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Switzerland (2015)CrossRefMATHGoogle Scholar
  4. 4.
    Datta, S., Majumder, A., Naidu, K.: Capacitated team formation problem on social networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2012, pp. 1005–1013. ACM (2012)Google Scholar
  5. 5.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013)CrossRefMATHGoogle Scholar
  6. 6.
    Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1972)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)MATHGoogle Scholar
  8. 8.
    Gajewar, A., Sarma, A.D.: Multi-skill collaborative teams based on densest subgraphs. In: Proceedings of the 12th SIAM International Conference on Data Mining, SDM 2012, pp. 165–176. SIAM/Omnipress (2012)Google Scholar
  9. 9.
    Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 585–594. ACM (2003)Google Scholar
  10. 10.
    Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 467–476. ACM (2009)Google Scholar
  11. 11.
    Lappas, T., Liu, K., Terzi, E.: A survey of algorithms and systems for expert location in social networks. In: Social Network Data Analytics, pp. 215–241. Springer (2011)Google Scholar
  12. 12.
    Li, C., Shan, M.: Team formation for generalized tasks in expertise social networks. In: Proceedings of the 2nd IEEE International Conference on Social Computing, SocialCom 2010, pp. 9–16. IEEE 2010Google Scholar
  13. 13.
    Nederlof, J.: Fast polynomial-space algorithms using Möbius inversion: Improving on steiner tree and related problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 713–725. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
  15. 15.
    Park, J., Lee, S.: Keyword search in relational databases. Knowl. Inf. Syst. 26(2), 175–193 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Robert Bredereck
    • 1
  • Jiehua Chen
    • 1
  • Falk Hüffner
    • 1
  • Stefan Kratsch
    • 2
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTechnische Universität BerlinBerlinGermany
  2. 2.Institut für Informatik IUniversität BonnBonnGermany

Personalised recommendations