Combining Dynamic and Static Analysis to Help Develop Correct Graph Transformations

  • Amani MakhloufEmail author
  • Hanh Nhi Tran
  • Christian Percebois
  • Martin Strecker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9762)


Developing provably correct graph transformations is not a trivial task. Besides writing the code, a developer must as well specify the pre- and post-conditions. The objective of our work is to assist developers in producing such a Hoare triple in order to submit it to a formal verification tool. By combining static and dynamic analysis, we aim at providing more useful feedback to developers. Dynamic analysis helps identify inconsistencies between the code and its specifications. Static analysis facilitates extracting the pre- and post-conditions from the code. Based on this proposal, we implemented a prototype that allows running, testing and proving graph transformations written in small-\( \text{t}_{\mathcal{ALC}} \), our own transformation language.


Symbolic execution Test case generation Graph transformation development 



Part of this research has been supported by the Climt (Categorical and Logical Methods in Model Transformation) project (ANR-11-BS02-016).


  1. 1.
    Baklanova, N., Brenas, J.H., Echahed, R., Percebois, C., Strecker, M., Tran, H.N.: Provably correct graph transformations with small-tALC. In: ICTERI 2015, pp. 78–93 (2015)Google Scholar
  2. 2.
    Schmidt-Schauß, M., Smolka, G.: Attributive concept descriptions with complements. Artif. Intell. 48(1), 1–26 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Smaragdakis, Y., Csallner, C.: Combining static and dynamic reasoning for bug detection. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 1–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A.W., Jones, C.B., Wood, K.R. (eds.) Reflections on the Work of C.A.R. Hoare. History of Computing Series, pp. 101–121. Springer, London (2010)Google Scholar
  5. 5.
    Beckert, B., Gladisch, C.: White-box testing by combining deduction-based specification extraction and black-box testing. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 207–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundam. Inf. 118(1–2), 135–175 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Liu, S., Nakajima, S.: Combining specification-based testing, correctness proof, and inspection for program verification in practice. In: Liu, S., Duan, Z. (eds.) SOFL + MSVL 2013. LNCS, vol. 8332, pp. 1–18. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  9. 9.
    Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.K.: PVS: combining specification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  10. 10.
    Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y., Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Xie, T., Marinov, D., Schulte, W., Notkin, D.: Symstra: a framework for generating object-oriented unit tests using symbolic execution. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 365–381. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Bak, C., Faulkner, G., Plump, D., Runciman, C.: A reference interpreter for the graph programming language GP 2. In: Rensink, A., Zambon E. (eds.) Graphs as Models 2015 (GaM 2015). EPTCS 2015, vol. 181, pp. 48–64 (2015)Google Scholar
  13. 13.
    Darabos, A., Pataricza, A., Varró, D.: Towards testing the implementation of graph transformations. Electron. Notes Theor. Comput. Sci. 211, 75–85 (2008)CrossRefGoogle Scholar
  14. 14.
    Geiger, L., Zündorf, A.: Transforming graph based scenarios into graph transformation based JUnit tests. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 61–74. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Molloy, M., Reed, B.: A critical point for random graphs with a given degree sequence. Random Struct. Algorithms 6(2–3), 161–180 (1995). WileyMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Molloy, M., Reed, B.: The size of the giant component of a random graph with a given degree sequence. Comb. Prob. Comput. 7(3), 295–305 (1998). Cambridge University PressMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhai, J., Wang, H., Zhao, J.: Post-condition-directed invariant inference for loops over data structures. In: SERE-C 2014, pp. 204–212. IEEE (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Amani Makhlouf
    • 1
    Email author
  • Hanh Nhi Tran
    • 1
  • Christian Percebois
    • 1
  • Martin Strecker
    • 1
  1. 1.Institut de Recherche en Informatique de Toulouse (IRIT), University of ToulouseToulouseFrance

Personalised recommendations