Multilabel Classification

  • Francisco Herrera
  • Francisco Charte
  • Antonio J. Rivera
  • María J. del Jesus
Chapter

Abstract

This book is concerned with the classification of multilabeled data and other tasks related to that subject. The goal of this chapter is to formally introduce the problem, as well as to give a broad overview of its main application fields and how it have been tackled by experts. A general introduction to the matter is provided in Sect. 2.1, followed by a formal definition of the multilabel classification problem in Sect. 2.2. Some of the main application fields of multilabel classification are portrayed in Sect. 2.3. Lastly, the approaches followed to face this duty are introduced in Sect. 2.4.

Keywords

Beach 

References

  1. 1.
    Alcala-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL multi-label dataset repository. http://sci2s.ugr.es/keel/multilabel.php
  2. 2.
    Alcala-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL data-mining software tool: data set repository and integration of algorithms and experimental analysis framework. J. Mult-valued Log. Soft Comput. 17(2–3), 255–287 (2011)Google Scholar
  3. 3.
    Alvares-Cherman, E., Metz, J., Monard, M.C.: Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst. Appl. 39(2), 1647–1655 (2012)CrossRefGoogle Scholar
  4. 4.
    Aly, M.: Survey on multiclass classification methods. In: Technical Report, pp. 1–9. California Institute of Technology (2005)Google Scholar
  5. 5.
    Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)CrossRefGoogle Scholar
  6. 6.
    Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)MathSciNetMATHGoogle Scholar
  7. 7.
    Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X.Z., Raich, R., Hadley, S.J.K., Hadley, A.S., Betts, M.G.: Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach. J. Acoust. Soc. Am. 131(6), 4640–4650 (2012)CrossRefGoogle Scholar
  8. 8.
    Brinker, K., Hüllermeier, E.: Case-based multilabel ranking. In: Proceedings of 20th International Joint Conference on Artificial Intelligence, IJCAI’07, pp. 702–707. Morgan Kaufmann (2007)Google Scholar
  9. 9.
    Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc. 2(2), 121–167 (1998)CrossRefGoogle Scholar
  10. 10.
    Charte, F., Charte, D.: Working with multilabel datasets in R: the mldr package. R J. 7(2), 149–162 (2015)Google Scholar
  11. 11.
    Charte, F., Charte, D., Rivera, A.J., del Jesus, M.J., Herrera, F.: R Ultimate multilabel dataset repository. In: Proceedings of 11th International Conference on Hybrid Artificial Intelligent Systems, HAIS’16, vol. 9648, pp. 487–499. Springer (2016)Google Scholar
  12. 12.
    Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Multilabel classification. In: Problem Analysis, Metrics and Techniques Book Repository. https://github.com/fcharte/SM-MLC
  13. 13.
    Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing 163, 3–16 (2015)CrossRefGoogle Scholar
  14. 14.
    Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLSMOTE: approaching imbalanced multilabel learning through synthetic instance generation. Knowl.-Based Syst. 89, 385–397 (2015)CrossRefGoogle Scholar
  15. 15.
    Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: QUINTA: a question tagging assistant to improve the answering ratio in electronic forums. In: Proceedings of IEEE International Conference on Computer as a Tool, EUROCON’15, pp. 1–6. IEEE (2015)Google Scholar
  16. 16.
    Chen, K., Lu, B., Kwok, J.: Efficient classification of multi-label and imbalanced data using min-max modular classifiers. In: Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN’06, pp. 1770–1775 (2006)Google Scholar
  17. 17.
    Chen, X., Zhan, Y., Ke, J., Chen, X.: Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs. Multimedia Tools Appl. 1–22 (2015)Google Scholar
  18. 18.
    Cherkassky, V., Mulier, F.: Learning from Data: Concepts. Theory and Methods. Wiley-IEEE Press (2007)Google Scholar
  19. 19.
    Cong, H., Tong, L.H.: Grouping of triz inventive principles to facilitate automatic patent classification. Expert Syst. Appl. 34(1), 788–795 (2008)CrossRefGoogle Scholar
  20. 20.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)CrossRefMATHGoogle Scholar
  21. 21.
    Crammer, K., Dredze, M., Ganchev, K., Talukdar, P.P., Carroll, S.: Automatic code assignment to medical text. In: Proceedings of Workshop on Biological, Translational, and Clinical Language Processing, BioNLP’07, pp. 129–136. Association for Computational Linguistics (2007)Google Scholar
  22. 22.
    Dembszynski, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence in multilabel classification. In: ICML Workshop on Learning from Multi-label data, pp. 5–12 (2010)Google Scholar
  23. 23.
    Dendamrongvit, S., Kubat, M.: Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains. In: New Frontiers in Applied Data Mining, LNCS, vol. 5669, pp. 40–52. Springer (2010)Google Scholar
  24. 24.
    Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems. LNCS, vol. 1857, pp. 1–15. Springer (2000)Google Scholar
  25. 25.
    Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with multiple algorithms. In: Proc. 10th Panhellenic Conference on Informatics, PCI’05, vol. 3746, pp. 448–456. Springer (2005)Google Scholar
  26. 26.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley (2000)Google Scholar
  27. 27.
    Dumais, S., Furnas, G., Landauer, T., Deerwester, S., Deerwester, S., et al.: Latent semantic indexing. In: Proceedings of 4th Text Retrieval Conference, TREC-4, pp. 105–115. NIST (1995)Google Scholar
  28. 28.
    Duygulu, P., Barnard, K., de Freitas, J., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Proceedings of 7th European Conference on Computer Vision, ECCV’02, vol. 2353, pp. 97–112. Springer (2002)Google Scholar
  29. 29.
    Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687. MIT Press (2001)Google Scholar
  30. 30.
    Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133–153 (2008)Google Scholar
  31. 31.
    Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761–1776 (2011)CrossRefGoogle Scholar
  32. 32.
    Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging, boosting, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(4), 463–484 (2012)CrossRefGoogle Scholar
  33. 33.
    Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of 14th ACM International Conference on Information and Knowledge Management, CIKM’05, pp. 195–200. ACM (2005)Google Scholar
  34. 34.
    Gibaja, E., Ventura, S.: A tutorial on multi-label learning. ACM Comput. Surv. 47(3) (2015)Google Scholar
  35. 35.
    Gonçalves, T., Quaresma, P.: A preliminary approach to the multilabel classification problem of Portuguese juridical documents. In: Proceedings of 11th Portuguese Conference on Artificial Intelligence, EPIA’03, pp. 435–444. Springer (2003)Google Scholar
  36. 36.
    Guo, Y., Gu, S.: Multi-label classification using conditional dependency networks. In: Proceedings of 22th International Joint Conference on Artificial Intelligence, IJCAI’11, vol. 2, pp. 1300–1305 (2011)Google Scholar
  37. 37.
    Holmes, G., Donkin, A., Witten, I.H.: WEKA: a machine learning workbench. In: Proceedings of 2nd Australian and New Zealand Conference on Intelligent Information Systems, ANZIIS’02, pp. 357–361 (2002)Google Scholar
  38. 38.
    Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16), 1897–1916 (2008)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Jolliffe, I.: Introduction. In: Principal Component Analysis, pp. 1–7. Springer (1986)Google Scholar
  40. 40.
    Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for automated tag suggestion. In: Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD’08, pp. 75–83 (2008)Google Scholar
  41. 41.
    Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Proc eedings of 15th European Conference on Machine Learning, ECML’04, pp. 217–226. Springer (2004)Google Scholar
  42. 42.
    Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)Google Scholar
  43. 43.
    Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Proc eedings of 8th IEEE International Conference on Data Mining, ICDM’08, pp. 995–1000. IEEE (2008)Google Scholar
  44. 44.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85, 333–359 (2011)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Read, J., Reutemann, P.: MEKA multi-label dataset repository. http://sourceforge.net/projects/meka/files/Datasets/
  46. 46.
    Rokach, L.: Pattern classification using ensemble methods. World Scientific (2009)Google Scholar
  47. 47.
    Salton, G., Fox, E.A., Wu, H.: Extended Boolean information retrieval. Commun. ACM 26(11), 1022–1036 (1983)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeulders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of 14th ACM International Conference on Multimedia, MULTIMEDIA’06, pp. 421–430 (2006)Google Scholar
  49. 49.
    Sobol-Shikler, T., Robinson, P.: Classification of complex information: Inference of co-occurring affective states from their expressions in speech. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1284–1297 (2010)CrossRefGoogle Scholar
  50. 50.
    Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short text classification in twitter to improve information filtering. In: Proceedings of 33rd international ACM SIGIR conference on Research and development in information retrieval, pp. 841–842. ACM (2010)Google Scholar
  51. 51.
    Sun, L., Ji, S., Ye, J.: Multi-label dimensionality reduction. CRC Press (2013)Google Scholar
  52. 52.
    Tenenboim-Chekina, L., Rokach, L., Shapira, B.: Identification of label dependences for multi-label classification. In: Proceedings of 2nd International Workshop on Learning from Multi-Label Data, MLD’10, pp. 53–60 (2010)Google Scholar
  53. 53.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer (2010)Google Scholar
  54. 54.
    Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN multi-label dataset repository. http://mulan.sourceforge.net/datasets.html
  55. 55.
    Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN: a java library for multi-label learning. J. Mach. Learn. Res. 12, 2411–2414 (2011)MathSciNetMATHGoogle Scholar
  56. 56.
    Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process. 16(2), 467–476 (2008)CrossRefGoogle Scholar
  57. 57.
    Vembu, S., Gärtner, T.: Label ranking algorithms: a survey. In: Preference learning, pp. 45–64. Springer (2011)Google Scholar
  58. 58.
    Wieczorkowska, A., Synak, P., Raś, Z.: Multi-label classification of emotions in music. In: Intelligent Information Processing and Web Mining. AISC, vol. 35, Chap. 30, pp. 307–315 (2006)Google Scholar
  59. 59.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  60. 60.
    Zhang, M., Zhang, K.: Multi-label learning by exploiting label dependency. In: Proceedings of 16th International Conference on Knowledge Discovery and Data Mining, ACM SIGKDD’10, pp. 999–1008 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francisco Herrera
    • 1
  • Francisco Charte
    • 1
  • Antonio J. Rivera
    • 2
  • María J. del Jesus
    • 2
  1. 1.University of GranadaGranadaSpain
  2. 2.University of JaénJaénSpain

Personalised recommendations