Advertisement

Parallel Attribute Exploration

  • Francesco Kriegel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9717)

Abstract

The canonical base of a formal context is a minimal set of implications that is sound and complete. A recent paper has provided a new algorithm for the parallel computation of canonical bases. An important extension is the integration of expert interaction for Attribute Exploration in order to explore implicational bases of inaccessible formal contexts. This paper presents and analyzes an algorithm that allows for Parallel Attribute Exploration.

Keywords

Formal Concept Analysis Attribute Exploration Canonical base Implication Parallel algorithm Expert interaction Supervised learning 

Notes

Acknowledgements

The author gratefully thanks the anonymous reviewers for their constructive hints and helpful remarks.

References

  1. 1.
    Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of horn clauses. Mach. Learn. 9, 147–164 (1992)zbMATHGoogle Scholar
  2. 2.
    Arias, M., Balcázar, J.L.: Canonical Horn representations and query learning. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 156–170. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Borchmann, D.: Learning terminological knowledge with high confidence from erroneous data. Ph.D. thesis. Technische Universität Dresden (2014)Google Scholar
  4. 4.
    Ganter, B.: Attribute exploration with background knowledge. Theor. Comput. Sci. 217(2), 215–233 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ganter, B.: Two Basic Algorithms in Concept Analysis. FB4-Preprint 831. Darmstadt, Germany: Technische Hochschule Darmstadt (1984)Google Scholar
  6. 6.
    Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 312–340. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Guigues, J.-L., Duquenne, V.: Famille minimale d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sci. Humaines 95, 5–18 (1986)MathSciNetGoogle Scholar
  9. 9.
    Kriegel, F.: Concept Explorer FX. Software for Formal Concept Analysis (2010–2016). https://github.com/francesco-kriegel/conexp-fx
  10. 10.
    Kriegel, F.: NextClosures - Parallel Exploration of Constrained Closure Operators. LTCS-Report 15–01. Dresden, Germany: Chair of Automata Theory, Institute of Theoretical Computer Science, Technische Universität Dresden (2015)Google Scholar
  11. 11.
    Kriegel, F., Borchmann, D.: NextClosures: parallel computation of the canonical base. In: Proceedings of the 12th International Conference on Concept Lattices and Their Applications (CLA 2015), Clermont-Ferrand, France, 13–16 October 2015, pp. 181–192 (2015)Google Scholar
  12. 12.
    Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville (1983)zbMATHGoogle Scholar
  13. 13.
    Stumme, G.: Attribute exploration with background implications and exceptions. In: Bock, H.-H., Polasek, W., et al. (eds.) Data Analysis and Information Systems. Studies in Classification, Data Analysis, and Knowledge Organization, pp. 457–469. Springer, Heidelberg (1996)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute of Theoretical Computer ScienceTechnische Universität DresdenDresdenGermany

Personalised recommendations