Knowledge Engineering Method Based on Consensual Knowledge and Trust Computation: The MUSCKA System

  • Fabien Amarger
  • Jean-Pierre Chanet
  • Ollivier Haemmerlé
  • Nathalie Hernandez
  • Catherine Roussey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9717)

Abstract

We propose a method for building a knowledge base addressing specific issues such as covering end-users’ needs. After designing an ontology module representing the knowledge needed, we enrich and populate it automatically with knowledge extracted from existing sources such as thesauri or classifications. The originality of our proposition is to propose ontological object candidates from existing sources according to their relatedness to the ontological module and to their trust score. This paper describes the trust measures we propose which are obtained by analysing the consensus found in existing sources. We consider that knowledge is more reliable if it has been extracted from several sources. Our measures has been evaluated on a real case study with experts from the agriculture domain.

Keywords

Ontology development Trust Non-ontological sources Ontology Design Pattern Ontology merging 

References

  1. 1.
    Abbas, M.A., Berio, G.: Creating ontologies using ontology mappings: compatible and incompatible ontology mappings. In: Web Intelligence (WI) and Intelligent Agent Technologies (IAT), pp. 143–146 (2013)Google Scholar
  2. 2.
    Amarger, F.: Vers un systeme intelligent de capitalisation de connaissances pour l’agriculture durable: construction d’ontologies agricoles par transformation de sources existantes. Ph.D. thesis, Université de Toulouse 2 le Mirail (2015)Google Scholar
  3. 3.
    Amarger, F., Chanet, J.-P., Haemmerlé, O., Hernandez, N., Roussey, C.: Construction d’une ontologie par transformation de systèmes d’organisation des connaissances et évaluation de la confiance. Ingénierie des Systèmes d’Information 20(3), 37–61 (2015)CrossRefGoogle Scholar
  4. 4.
    Amarger, F., Chanet, J.-P., Haemmerlé, O., Hernandez, N., Roussey, C.: SKOS sources transformations for ontology engineering: agronomical taxonomy use case. In: Closs, S., Studer, R., Garoufallou, E., Sicilia, M.-A. (eds.) MTSR 2014. CCIS, vol. 478, pp. 314–328. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web. Web Semant. Sci. Serv. Agents World Wide Web 5, 58–71 (2007)CrossRefGoogle Scholar
  6. 6.
    Balakrishnan, R., Kambhampati, S.: Sourcerank: relevance and trust assessment for deep web sources based on inter-source agreement. In: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, pp. 227–236. ACM, New York (2011)Google Scholar
  7. 7.
    Bizer, C., Oldakowski, R.: Using context- and content-based trust policies on the semantic web. In: Proceedings of the 13th international conference on World Wide Web - Alternate Track Papers & Posters, WWW 2004, 17–20 May 2004, pp. 228–229. ACM, New York (2004)Google Scholar
  8. 8.
    Clarke, C.L.A, Cormack, G.V., Lynam, T.R.: Exploiting redundancy in question answering. In: SIGIR 2001: Proceedings of the 24th Annual International Conference on Research and Development in Information Retrieval, pp. 358–365. ACM, September 2001Google Scholar
  9. 9.
    Euzenat, J., Shvaiko, P.: Ontology Matching, vol. 333. Springer, Heidelberg (2007)MATHGoogle Scholar
  10. 10.
    Gil, Y., Artz, D.: Towards content trust of web resources. In: Proceedings of the 15th International Conference on World Wide Web, WWW 2006, Edinburgh, Scotland, UK, 23–26 May 2006, pp. 565–574 (2006)Google Scholar
  11. 11.
    Grau, B.C., Dragisic, Z., Eckert, K., Euzenat, J., Ferrara, A., Granada, R., Ivanova, V., Jiménez-Ruiz, E., Kempf, A.O., Lambrix, P., et al.: Results of the ontology alignment evaluation initiative 2013. In: ISWC Workshop on Ontology Matching (OM), pp. 61–100 (2013)Google Scholar
  12. 12.
    Jean-Mary, Y.R., Kabuka, M.R.: ASMOV: results for OAEI 2008. In: Proceedings of the 3rd International Workshop on Ontology Matching (OM 2008), Karlsruhe, Germany, vol. 431. CEUR-WS.org, October 2008Google Scholar
  13. 13.
    Jiménez-Ruiz, E., Grau, B.C., Zhou, Y., Horrocks, I.: Large-scale interactive ontology matching: algorithms and implementation. In: European Conference on Artificial Intelligence, pp. 444–449 (2012)Google Scholar
  14. 14.
    Meilicke, C., Stuckenschmidt, H.: An efficient method for computing alignment diagnoses. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 182–196. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Nagy, M., Vargas-Vera, M.: Dealing with contradictory evidence using fuzzy trust in semantic web data. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2008-2010/UniDL 2010. LNCS, vol. 7123, pp. 139–157. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Raunich, S., Rahm, E.: Target-driven merging of taxonomies with Atom. Inf. Syst. 42, 1–14 (2014)CrossRefGoogle Scholar
  17. 17.
    Roussey, C., Chanet, J.-P., Cellier, V., Amarger, F.: Agronomic taxon. In: WOD, p. 5 (2013)Google Scholar
  18. 18.
    Soergel, D., Lauser, B., Liang, A., Fisseha, F., Keizer, J., Katz, S.: Reengineering thesauri for new applications: the AGROVOC example. J. Digit. Inf. 4, 1–23 (2004)Google Scholar
  19. 19.
    Trojahn, C., Euzenat, J., Tamma, V., Payne, T.R.: Argumentation for reconciling agent ontologies. In: Elçi, A., Koné, M.T., Orgun, M.A. (eds.) Semantic Agent Systems. SCI, vol. 344, pp. 89–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Villazón-Terrazas, B., Suárez-Figueroa, M.C., Gómez-Pérez, A.: A pattern-based method for re-engineering non-ontological resources into ontologies. Int. J. Semant. Web Inf. Syst. 6, 27–63 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fabien Amarger
    • 1
    • 2
  • Jean-Pierre Chanet
    • 1
  • Ollivier Haemmerlé
    • 2
  • Nathalie Hernandez
    • 2
  • Catherine Roussey
    • 1
  1. 1.Irstea, UR TSCF Technologies et systèmes d’information pour les agrosystèmesAubiéreFrance
  2. 2.Département de Mathématiques-InformatiqueIRIT, UMR 5505, UT2JToulouse CedexFrance

Personalised recommendations